【題目】如圖,△ABC中,∠ACB=90°,D為AB上任一點,過D作AB的垂線,分別交邊AC、BC的延長線于E、F兩點,∠BAC、∠BFD的平分線交于點I,AI交DF于點M,F(xiàn)I交AC于點N,連接BI.下列結(jié)論:①∠BAC=∠BFD;②∠ENI=∠EMI;③AI⊥FI;④∠ABI=∠FBI;其中正確結(jié)論的個數(shù)是( )
A.1個 B.2個 C.3個 D.4個
【答案】C
【解析】
試題分析:先根據(jù)∠ACB=90°可知∠DBF+∠BAC=90°,再由FD⊥AB可知∠BDF=90°,所以∠DBF+∠BFD=90°,通過等量代換即可得出∠BAC=∠BFD,故①正確;根據(jù)∠BAC=∠BFD,∠BAC、∠BFD的平分線交于點I可知∠EFN=∠EAM,再由對頂角相等可知∠FEN=∠AEM,根據(jù)三角形外角的性質(zhì)即可判斷出∠ENI=∠EMI,故②正確;由①知∠BAC=∠BFD,因為∠BAC、∠BFD的平分線交于點I,故∠MAD=∠MFI,再根據(jù)∠AMD=∠FMI可知,∠AIF=∠ADM=90°,即AI⊥FI,故③正確;因為BI不是∠B的平分線,所以∠ABI≠∠FBI,故④錯誤.
解:∵∠ACB=90°,
∴∠DBF+∠BAC=90°,
∵FD⊥AB,
∴∠BDF=90°,
∴∠DBF+∠BFD=90°,
∴∠BAC=∠BFD,故①正確;
∵∠BAC=∠BFD,∠BAC、∠BFD的平分線交于點I,
∴∠EFN=∠EAM,
∵∠FEN=∠AEM,
∴∠ENI=∠EMI,故②正確;
∵由①知∠BAC=∠BFD,∠BAC、∠BFD的平分線交于點I,
∴∠MAD=∠MFI,
∵∠AMD=∠FMI,
∴∠AIF=∠ADM=90°,即AI⊥FI,故③正確;
∵BI不是∠B的平分線,
∴∠ABI≠∠FBI,故④錯誤.
故選C.
科目:初中數(shù)學 來源: 題型:
【題目】(1)平面內(nèi)將一副三角板按如圖1所示擺放,∠EBC= °;
(2)平面內(nèi)將一副三角板按如圖2所示擺放,若∠EBC=165°,那么∠α= °;
(3)平面內(nèi)將一副三角板按如圖3所示擺放,∠EBC=115°,求∠α的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形OABC的頂點O在坐標系原點,頂點A在x軸上,∠B=120°,OA=2,將菱形OABC繞原點O順時針旋轉(zhuǎn)105°至OA′B′C′的位置,則點B′的坐標為( )
A.(﹣,) B.(,﹣)
C.(2,﹣2) D.(,﹣)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】圓內(nèi)接四邊形ABCD中,∠A、∠B、∠C的度數(shù)比是2︰3︰6,則∠D的度數(shù)是( )
A.67.5° B.135° C.110° D.112.5°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)學實驗室:
點A、B在數(shù)軸上分別表示有理數(shù)a、b,A、B兩點之間的距離表示為AB,在數(shù)軸上A、B兩點之間的距離AB=|a﹣b|.
利用數(shù)形結(jié)合思想回答下列問題:
①數(shù)軸上表示2和5兩點之間的距離是 ,數(shù)軸上表示1和﹣3的兩點之間的距離是 .
②數(shù)軸上表示x和﹣2的兩點之間的距離表示為 .數(shù)軸上表示x和5的兩點之間的距離表示為 .
③若x表示一個有理數(shù),則|x﹣1|+|x+3|的最小值= .
④若x表示一個有理數(shù),且|x+3|+|x﹣2|=5,則滿足條件的所有整數(shù)x的是 .
⑤若x表示一個有理數(shù),當x為 ,式子|x+2|+|x﹣3|+|x﹣5|有最小值為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c(a≠0)圖象的一部分,對稱軸為x=,且經(jīng)過點(2,0),有下列說法:①abc<0;②a+b=0;③4a+2b+c<0;④若(0,y1),(1,y2)是拋物線上的兩點,則y1=y2.上述說法正確的是( )
A.①②④ B.③④ C.①③④ D.①②
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com