【題目】有這樣一個問題:探究函數(shù)的圖象與性質(zhì).小華根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)的圖象與性質(zhì)進(jìn)行了探究.下面是小華的探究過程,請補充完整:

(1)函數(shù)的自變量x的取值范圍是___________;

(2)下表是yx的幾組對應(yīng)值.m的值為_______;

x

-2

-1

1

2

3

4

y

0

m

1

(3)如圖,在平面直角坐標(biāo)系xOy中,描出了以上表中各對對應(yīng)值為坐標(biāo)的點.根據(jù)描出的點,畫出該函數(shù)的圖象;

(4)結(jié)合函數(shù)的圖象,寫出該函數(shù)的一條性質(zhì):____________

(5)結(jié)合函數(shù)圖象估計的解的個數(shù)為_______個.

【答案】1x-2x0;(2-1;(3)見詳解;(4)當(dāng)2≤x0x0時,yx增大而減小,答案不唯一;(51

【解析】

1)根據(jù)分式有意義分母不為0和二次根式有意義的條件被開方數(shù)非負(fù),即可得出關(guān)于x的一元一次不等式組,解之即求出自變量x的取值范圍;

2)將x=-1代入解析式求m的值即可;

3)根據(jù)圖中描出各點,連點成線畫出圖象即可;

4)觀察函數(shù)圖象,根據(jù)函數(shù)圖象可尋找到函數(shù)具有性質(zhì);

5)在第(3)基礎(chǔ)上做出函數(shù)y=x+4的圖象,數(shù)出它們的交點個數(shù),

解:(1)根據(jù)題意得,x+20x0

解得:x-2x0

∴函數(shù)的自變量x的取值范圍是:x-2x0

2)當(dāng)x=-1時,m=,

m=-1

3)圖象如圖所示:

4)在-2x0時,函數(shù)隨著x的增大而減小,在x0時,y隨著x的增大而減;

故答案為:當(dāng)2≤x0x0時,yx增大而減。

5)∵方程組的解為兩個函數(shù)圖象的交點,兩函數(shù)圖象如下圖,

也就是圖象中的交點個數(shù)只有一個

∴方程的解的個數(shù)也是1

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列條件能判定ABC≌△DEF的是( 。

A. AB=DE AC=DF B=EB. AB=DE AC=DF C=F

C. AB=DE AC=DF A=DD. AB=DE AC=DF B=F

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一個坡角為20°的斜坡上有一棵樹,高為AB,當(dāng)太陽光線與水平線成52°角時,測得該樹斜坡上的樹影BC的長為10m,求樹高AB(精確到0.1m) (已知:sin20°≈0.342,cos20°≈0.940tan20°≈0.364sin52°≈0.788,cos52°≈0.616,tan52°≈1.280.供選用)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程mx2(m+2)x2=0m≠0

(1)求證:方程一定有兩個實數(shù)根;

(2)若此方程的兩根為不相等的整數(shù),求整數(shù)m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果關(guān)于的一元二次方程有兩個實數(shù)根,且其中一個根為另一個根的2倍,則稱這樣的方程為倍根方程,研究發(fā)現(xiàn)了此類方程的一般性結(jié)論:設(shè)其中一根為,則另一個根為,因此,所以有;我們記時,方程為倍根方程;

下面我們根據(jù)此結(jié)論來解決問題:

1)方程①;方程②;方程③這幾個方程中,是倍根方程的是_________(填序號即可);

2)若是倍根方程,則的值為______;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線l1l2,直線l3和直線l1,l2交于C、D兩點,點P在直線CD上.

(1)試寫出圖1中∠APB、∠PAC、∠PBD之間的關(guān)系,并說明理由;

(2)如果P點在C、D之間運動時,∠APB、∠PAC、∠PBD之間的關(guān)系會發(fā)生變化嗎?

答:   (填發(fā)生或不發(fā)生)

(3)若點PC、D兩點的外側(cè)運動時(P點與點CD不重合),如圖2,圖3,試分別寫出∠PAC、∠APB、∠PBD之間的關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】青島市某大酒店豪華間實行淡季、旺季兩種價格標(biāo)準(zhǔn),旺季每間比淡季上漲,下表是去年該酒店豪華間某兩天的相關(guān)記錄:

旺季

淡季

未入住房間數(shù)

10

0

日總收入(元)

24 000

40 000

1)該酒店豪華間有多少間?旺季每間價格為多少元

2)今年旺季來臨,豪華間的間數(shù)不變。經(jīng)市場調(diào)查發(fā)現(xiàn),如果豪華間仍舊實行去年旺季價格,那么每天都客滿;如果價格繼續(xù)上漲,那么每增加25元,每天未入住房間數(shù)增加1間。不考慮其他因素,該酒店將豪華間的價格上漲多少元時,豪華間的日總收入最高?最高日總收入是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有下列四種結(jié)論:①AB=AD;②∠B=∠D;③∠BAC=∠DAC;④BC=DC.以其中的2個結(jié)論作為依據(jù)不能判定△ABC≌△ADC的是(  )

A. ①② B. ①③ C. ①④ D. ②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在邊長為1個單位長度的小正方形組成的網(wǎng)格中,給出了格點ABC(頂點是網(wǎng)格線的交點)和格點P

1)以A點為位似中心ABC在網(wǎng)格中放大成AB1C1,使=2,請畫出AB1C1;

2)以P點為三角形的一個頂點請畫一個格點PMN,使PMN∽△ABC且相似比為

查看答案和解析>>

同步練習(xí)冊答案