【題目】一不透明的布袋里,裝有紅、黃、藍三種顏色的小球(除顏色外其余都相同),其中有紅球2個,籃球1個,黃球若干個,現(xiàn)從中任意摸出一個球是紅球的概率為.
(1)求口袋中黃球的個數(shù);
(2)甲同學先隨機摸出一個小球(不放回),再隨機摸出一個小球,請用“樹狀圖法”或“列表法”,求兩次摸出都是紅球的概率;
(3)現(xiàn)規(guī)定:摸到紅球得5分,摸到黃球得3分(每次摸后放回),乙同學在一次摸球游戲中,第一次隨機摸到一個紅球第二次又隨機摸到一個藍球,若隨機,再摸一次,求乙同學三次摸球所得分數(shù)之和不低于10分的概率.
【答案】(1)黃球有1個;(2);(3).
【解析】
(1)首先設口袋中黃球的個數(shù)為x個,根據(jù)題意得:,解此方程即可求得答案.
(2)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與兩次摸出都是紅球的情況,再利用概率公式即可求得答案.
(3)由若隨機,再摸一次,求乙同學三次摸球所得分數(shù)之和不低于10分的有3種情況,且共有4種等可能的結果;直接利用概率公式求解即可求得答案.
解:(1)設口袋中黃球的個數(shù)為x個,
根據(jù)題意得:,解得:x=1.
經(jīng)檢驗:x=1是原分式方程的解.
∴口袋中黃球的個數(shù)為1個.
(2)畫樹狀圖得:
∵共有12種等可能的結果,兩次摸出都是紅球的有2種情況,
∴兩次摸出都是紅球的概率為:.
(3)∵摸到紅球得5分,摸到黃球得3分,而乙同學在一次摸球游戲中,第一次隨機摸到一個紅球第二次又隨機摸到一個藍球,
∴乙同學已經(jīng)得了7分.
∴若隨機,再摸一次,求乙同學三次摸球所得分數(shù)之和不低于10分的有3種情況,且共有4種等可能的結果;
∴若隨機,再摸一次,求乙同學三次摸球所得分數(shù)之和不低于10分的概率為:.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中,∠BAC=90°,AB=3,AC=6,點D,E分別是邊BC,AC上的動點,則DA+DE的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知直線PD垂直平分⊙O的半徑OA于點B,PD交⊙O于點C,D,PE是⊙O的切線,E為切點,連結AE,交CD于點F
(1)若⊙O的半徑為8,求CD的長;
(2)證明:PE=PF;
(3)若PF=13,sinA=,求EF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法正確的是( )
A.袋中有形狀、大小、質地完全一樣的5個紅球和1個白球,從中隨機抽出一個球,一定是紅球
B.天氣預報“明天降水概率10%”,是指明天有10%的時間會下雨
C.某地發(fā)行一種福利彩票,中獎率是千分之一,那么,買這種彩票1000張,一定會中獎
D.連續(xù)擲一枚均勻硬幣,若5次都是正面朝上,則第六次仍然可能正面朝上
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,△ABC與△ADE均是等腰直角三角形,直角邊AC、AD在同一條直線上,點G、H分別是斜邊DE、BC的中點,點F為BE的中點,連接GF、GH.
(1)猜想GF與GH的數(shù)量關系,請直接寫出結論;
(2)現(xiàn)將圖①中的△ADE繞著點A逆時針旋轉α(0°<α<90°),得到圖②,請判斷(1)中的結論是否成立?若成立,請證明;若不成立,請說明理由;
(3)若AD=2,AC=4,將圖①中的△ADE繞著點A逆時針旋轉一周,直接寫出GH的最大值和最小值,并寫出取得最值時旋轉角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,點E是BC的中點,連接DE,過點A作AG⊥ED交DE于點F,交CD于點G.
(1)證明:△ADG≌△DCE;(2)連接BF,證明:AB=FB.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等腰Rt△ABC的直角邊長為,點O為斜邊AB的中點,點P為AB上任意一點,連接PC,以PC為直角邊作等腰Rt△PCD,連接BD.
(1)求證: ;
(2)請你判斷AC與BD有什么位置關系?并說明理由.
(3)當點P在線段AB上運動時,設AP=x,△PBD的面積為S,求S與x之間的函數(shù)關系式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com