【題目】關于x的方程 的解為非正數,且關于x的不等式組 無解,那么滿足條件的所有整數a的和是( )
A.﹣19
B.﹣15
C.﹣13
D.﹣9
【答案】C
【解析】解:分式方程去分母得:ax﹣x﹣1=2,
整理得:(a﹣1)x=3,
由分式方程的解為非正數,得到 ≤0,且 ≠﹣1,
解得:a<1且a≠﹣2,
不等式組整理得: ,
由不等式組無解,得到 <4,
解得:a>﹣6,
∴滿足題意a的范圍為﹣6<a<1,且a≠﹣2,即整數a的值為﹣5,﹣4,﹣3,﹣1,0,
則滿足條件的所有整數a的和是﹣13,
所以答案是:C
【考點精析】通過靈活運用分式方程的解和一元一次不等式的解法,掌握分式方程無解(轉化成整式方程來解,產生了增根;轉化的整式方程無解);解的正負情況:先化為整式方程,求整式方程的解;步驟:①去分母;②去括號;③移項;④合并同類項; ⑤系數化為1(特別要注意不等號方向改變的問題)即可以解答此題.
科目:初中數學 來源: 題型:
【題目】已知2輛A型車和1輛B型車載滿貨物一次可運貨10噸.用1輛A型車和2輛B型車載滿貨物一次可運貨11噸.某物流公司現(xiàn)有31噸貨物,計劃同時租用A型車a輛和B型車b輛,一次運完,且每輛車都滿載貨物.根據以上信息解答下列問題:
(1)1輛A型車和1輛B型車載滿貨物一次分別可運貨物多少噸?
(2)請幫助物流公司設計租車方案
(3)若A型車每輛車租金每次100元,B型車每輛車租金每次120元.請選出最省錢的租車方案,并求出最少的租車費.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=2,∠DAB=60°,點E是AD邊的中點,點M是AB邊上一動點(不與點A重合),延長ME交射線CD于點N,連接MD,AN.
(1)求證:四邊形AMDN是平行四邊形;
(2)填空:①當AM的值為 時,四邊形AMDN是矩形;②當AM的值為 時,四邊形AMDN是菱形。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀理解:
在上學期的學習中,我們知道若,其中a是底數,n是指數,m稱為冪,知道a和n可以求m.我們不妨思考:如果知道a,m,能否求n呢?對于,規(guī)定[a,m]=n,例如:,所以[6,36]=2.
(1)根據上述規(guī)定,填空:[3,______]= 4,[2,32]=_____,[-4,1]=______,[5,0.2]=______;
(2)記,,求y與x之間的關系式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將邊為的正方形ABCD繞點A沿逆時針方向旋轉30°后得到正方形AEFH,則圖中陰影部分的面積為( )
A. - B. 3- C. 2- D. 2-
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知正方形ABCD,頂點A(1,3)、B(1,1)、C(3,1),規(guī)定“把正方形ABCD先沿x軸翻折,再向左平移1個單位”為一次交換,如此這樣,連續(xù)經過2 020次變換后,正方形ABCD的對角線交點M的坐標變?yōu)?/span>_________
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖所示,菱形ABCD中,E,F(xiàn)分別是CB,CD上的點,且BE=DF.
(1)試說明:AE=AF;
(2)若∠B=60°,點E,F(xiàn)分別為BC和CD的中點,試說明:△AEF為等邊三角形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知兩地各需220噸和280噸化肥,A市有化肥200噸,B市有化肥300噸,剛好可以全部運往 兩地,如果從A市運往兩地運價分別為20元/噸和25元/噸,從B市運往兩地運價分別為15元/噸和22元/噸。
(1)如果A市運往C地的化肥為100噸,則總運費共多少元?
(2)設總運費為元,如果設A市運往C地的化肥噸,用含代數式來表示;
(3)按照(2)問的要求,猜想為多少時,總的運費最少,是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】重慶某油脂公司生產銷售菜籽油、花生油兩種食用植物油.
(1)已知花生的出油率為56%,是菜籽的1.4倍,現(xiàn)有菜籽、花生共100噸,若想得到至少52噸植物油,則其中的菜籽至多有多少噸?
(2)在去年的銷售中,菜籽油、花生油的售價分別為20元/升,30元/升,且銷量相同,今年由于花生原材料價格上漲,花生油的售價比去年提高了a%,菜籽油的售價不變,總銷量比去年降低a%,且菜籽油、花生油的銷量均占今年總銷量的 ,這樣,預計今年的銷售總額比去年下降 a%,求a的值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com