【題目】如圖,已知∠MON=90,A是∠MON內部的一點,過點A作AB⊥ON,垂點為點B,AB=3厘米,OB=4厘米,動點E、F同時從O點出發(fā),點E以1.5厘米/秒的速度沿ON方向運動,點F以2厘米/秒的速度沿OM方向運動,EF與OA交于點C,連接AE,當點E到達點B時,點F隨之停止運動。設運動時間為t秒(t>0)。
(1)當t=1秒時,ΔEOF與ΔABO是否相似?請說明理由。
(2)在運動過程中,不論t取何值時,總有EF⊥OA,為什么?
(3)連接AF,在運動過程中,是否存在某一時刻t,使得SΔAEF=S四邊形ABOF ?若存在,請求出此時t的值;若不存在,請說明理由。
【答案】(1)△EOF∽△ABO(2)EF⊥OA(3)t1=或t2=
【解析】試題分析:(1)由=
及∠MON=∠ABE=90°,可得出△EOF∽△ABO.
(2)證明Rt△EOF∽Rt△ABO,進而證明EF⊥OA.
(3)由已知S△AEF=S四邊形ABOF.得出S△FOE+S△ABE=
S梯形ABOF,從而可求出t的值.
試題解析:(1)∵t=1,
∴OE=1.5厘米,OF=2厘米,
∵AB=3厘米,OB=4厘米,
∴,
∵∠MON=∠ABE=90°,
∴△EOF∽△ABO.
(2)在運動過程中,OE=1.5t,OF=2t.
∵AB=3,OB=4.
∴.
又∵∠EOF=∠ABO=90°,
∴Rt△EOF∽Rt△ABO.
∴∠AOB=∠EOF.
∵∠AOB+∠FOC=90°,
∴∠EOF+∠FOC=90°,
∴EF⊥OA.
(3)如圖,連接AF,
∵OE=1.5t,OF=2t,
∴BE=4﹣1.5t
∴S△FOE=OEOF=
×1.5t×2t=
t2,S△ABE=
×(4﹣1.5t)×3=6﹣
t,
S梯形ABOF=(2t+3)×4=4t+6
∵S△AEF=S四邊形ABOF
∴S△FOE+S△ABE=S梯形ABOF,
∴t2+6﹣
t=
(4t+6),即6t2﹣17t+12=0,
解得t=或t=
.
∴當t=或t=
時,S△AEF=
S四邊形ABOF.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC的頂點坐標分別為A(1,3)、B(4,2)、C(2,1).
(1)作出與△ABC關于x軸對稱的△A1B1C1, 并寫出A1、B1、C1的坐標;
(2)以原點O為位似中心,在原點的另一側畫出△A2B2C2, 使.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知拋物線與x軸相交于
,C兩點
與y軸相交于點B
.
a0,
填“
”或“
”
;
若該拋物線關于直線
對稱,求拋物線的函數(shù)表達式;
在
的條件下,若點M為第三象限內拋物線上一動點,點M的橫坐標為
的面積為
求S關于m的函數(shù)關系式,并求出S的最大值;
在
的條件下,若點P是拋物線上的動點,點Q是直線
上的動點,判斷有幾個位置能夠使以點P、Q、B、O為頂點的四邊形為平行四邊形,直接寫出相應的點Q的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】四川雅安發(fā)生地震后,某校學生會向全校1900名學生發(fā)起了“心系雅安”捐款活動,為了解捐款情況,學會生隨機調查了部分學生的捐款金額,并用得到的數(shù)據(jù)繪制了如下統(tǒng)計圖①和圖②,請根據(jù)相關信息,解答下列是問題:
(1)本次接受隨機抽樣調查的學生人數(shù)為 ,圖①中m的值是 ;
(2)求本次調查獲取的樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);
(3)根據(jù)樣本數(shù)據(jù),估計該校本次活動捐款金額為10元的學生人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖, 正比例函數(shù)的圖象與反比例函數(shù)
的圖象交于A、B兩點,過點A作AC垂直x軸于點C,連接BC,若ΔABC面積為 2.
(1)求k的值
(2)x軸上是否存在一點D,使ΔABD是以AB為斜邊的直角三角形?若存在,求出點D的坐標,若不存在,說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過點(﹣1,0),對稱軸為直線x=2,下列結論:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若點A(﹣3,y1)、點B(﹣,y2)、點C(
,y3)在該函數(shù)圖象上,則y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x2,且x1<x2,則x1<﹣1<5<x2.其中正確的結論有( )
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,二次函數(shù)的圖象的對稱軸是直線x=1,且經過點(0,2).有下列結論:①ac>0;②
;③a+c<2-b;④
; ⑤x=-5和x=7時函數(shù)值相等.其中正確的結論有 ( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們定義:等腰三角形中底邊與腰的比叫作底角的鄰對(can).如圖①,在△ABC中,AB=AC,底角∠B的鄰對記作canB,這時canB=.容易知道一個角的大小與這個角的鄰對值是一一對應的,根據(jù)上述角的鄰對的定義,解下列問題:
(1) . can30°=______ __;
(2) . 如圖②,已知在△ABC中,AB=AC,canB=,S△ABC=24,求△ABC的周長.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com