【題目】如圖,已知等邊△ABC,AB=12.以AB為直徑的半圓與BC邊交于點D,過點D作DF⊥AC,垂足為F,過點F作FG⊥AB,垂足為G,連結GD.
(1)求證:DF是⊙O的切線;
(2)求FG的長;
(3)求△FDG的面積.
【答案】(1)詳見解析;(2);(3)
【解析】
(1) 如圖所示,連接OD.由題意可知∠A=∠B=∠C=60°,則OD=OB,可以證明△OBD為等邊三角形,易得∠C=∠ODB=60°,再運用平行線的性質和判定以及等量代換即可完成解答.
(2)先說明OD為△ABC的中位線,得到BD=CD=6.在Rt△CDF中,由∠C=60°,得∠CDF=30°,根據(jù)含30度的直角三角形三邊的關系得CF=CD,則AF=AC-CF=9,最后在Rt△AFG中,根據(jù)正弦的定義即可解答;
(3)作DH⊥FG,CD=6,CF=3,DF=3,FH=,DH=,最后根據(jù)三角形的面積公式解答即可.
解:(1)如圖所示,連接OD.
∵△ABC是等邊三角形,
∴∠A=∠B=∠C=60°
∵OD=OB
∴△OBD為等邊三角形,
∴∠C=∠ODB=60°,
∴AC∥OD,
∴∠CFD=∠FDO,
∵DF⊥AC,
∴∠CFD=∠FDO=90°,
∴DF是⊙O的切線
(2)因為點O是AB的中點,則OD是△ABC的中位線.
∵△ABC是等邊三角形,AB=12,
∴AB= AC= BC= 12, CD=BD=BC=6
∵∠C=60°,∠CFD=90°,
∴∠CDF=30°,同理可得∠AFG=30°,
∴CF=CD=3
∴AF=12-3=9.
∴.
(3)作DH⊥FG,CD=6,CF=3,DF=3
∴FH=,DH=
∴△FDG的面積為DHFG=
科目:初中數(shù)學 來源: 題型:
【題目】寒假中,小王向小李借一本數(shù)學培優(yōu)資料,但相互找不到對方的家,電話中兩人商量,走兩家之間長度為2400米的一條路,相向而行.小李在小王出發(fā)5分鐘后帶上數(shù)學培優(yōu)資料出發(fā).在整個行走過程中,兩人均保持各自的速度勻速行走.兩人相距的路程y(單位:米)與小王出發(fā)的時間x(單位:分)之間的關系如圖所示,則兩人相遇時,小李走了_____米.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,以AB為直徑的⊙O交BC于點D,連結AD,請你添加一個條件,使△ABD≌△ACD,并說明全等的理由.
你添加的條件是
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形 ABCD 中, G 為 BC 邊上一點, BE AG 于 E , DF AG 于 F ,連接 DE .
(1)求證: ABE DAF ;
(2)若 AF 1,四邊形 ABED 的面積為6 ,求 EF 的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形網(wǎng)格中的每個小正方形的邊長都是1,每個小正方形的頂點叫做格點.△ABC的三個頂點A,B,C都在格點上.將△ABC繞點A按順時針方向旋轉90°得到△AB′C′.
(1)在正方形網(wǎng)格中,畫出△AB′C′;
(2)計算線段AB在變換到AB′的過程中掃過的區(qū)域的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線與軸和軸分別交于點和點拋物線經(jīng)過點與直線的另一個交點為.
求的值和拋物線的解析式
點在拋物線上,軸交直線于點點在直線上,且四邊形為矩形.設點的橫坐標為矩形的周長為求與的函數(shù)關系式以及的最大值
將繞平面內(nèi)某點逆時針旋轉得到(點分別與點對應),若的兩個頂點恰好落在拋物線上,請直接寫出點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+2ax+c(a<0)的圖象與x軸交于A、B兩點,與y軸交于C點,頂點為D,一次函數(shù)y=mx﹣3的圖象與y軸交于E點,與二次函數(shù)的對稱軸交于F點,且tan∠FDC=.
(1)求a的值;
(2)若四邊形DCEF為平行四邊形,求二次函數(shù)表達式.
(3)在(2)的條件下設點M是線段OC上一點,連接AM,點P從點A出發(fā),先以1個單位長度/s的速度沿線段AM到達點M,再以個單位長度/s的速度沿MC到達點C,求點P到達點C所用最短時間為 s(直接寫出答案).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學習一定要講究方法,比如有效的預習可大幅提高聽課效率.九年級(1)班學習興趣小組為了了解全校九年級學生的預習情況,對該校九年級學生每天的課前預習時間(單位:)進行了抽樣調(diào)查.并將抽查得到的數(shù)據(jù)分成5組,下面是未完成的頻數(shù)、頓率分布表和頻數(shù)分布扇形圖.
組別 | 課前預習時間 | 頻數(shù)(人數(shù)) | 頻率 |
1 | 2 | ||
2 | 0.10 | ||
3 | 16 | 0.32 | |
4 | |||
5 | 3 |
請根據(jù)圖表中的信息,回答下列問題:
(1)本次調(diào)查的樣本容量為 ,表中的 , , ;
(2)試計算第4組人數(shù)所對應的扇形圓心角的度數(shù);
(3)該校九年級其有1000名學生,請估計這些學生中每天課前預習時間不少于的學生人數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com