【題目】如圖,為了測量某建筑物CE的高度,先在地面上用測角儀自A處測得建筑物頂部的仰角是45°,然后在水平地面上向建筑物前進了20m,此時自B處測得建筑物頂部的仰角是60°,已知測角儀的高度是1m,請你計算出該建筑物的高度(取 ≈1.732,結果精確到1m).

【答案】解:設CD為xm,
在Rt△ADC中,∠CAD=45°,
∴AD=CD=xm,
在Rt△BDC中,∠CBD=60°,
∴BD= = x,
由題意得,x﹣ x=20,
解得,x=10 +30,
則該建筑物的高度為:10 +30+1≈48m.
答:該建筑物的高度約為53m
【解析】設CD為xm,根據(jù)正切的概念用x表示出AD、BD,根據(jù)題意列出方程,解方程即可求出CD,結合圖形計算即可.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知圖甲是一個長為2m,寬為2n的長方形,沿圖甲中虛線用剪刀均勻分成四小塊長方形,然后按圖乙的形狀拼成一個正方形.

(1)圖乙中陰影部分正方形的邊長為   (用含字母m,n的整式表示).

(2)請用兩種不同的方法求圖乙中陰影部分的面積.

方法一:   ;

方法二:   

(3)觀察圖乙,并結合(2)中的結論,你能寫出下列三個整式:(m+n)2,(m﹣n)2,mn之間的等量關系嗎?

(4)根據(jù)(3)題中的等量關系,解決如下問題:若a+b=9,ab=5,求(a﹣b)2的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在ABCD中,點E,F(xiàn)在對角線BD上,且BE=DF,

求證:(1)AE=CF;(2)四邊形AECF是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一個不透明的盒子中,共有“一紅二白”三個球,它們除顏色外其余都相同.
(1)從盒子中摸出1個球,是白球的概率是多少?
(2)從盒子中摸出1個球,不放回再摸出1個球,請用畫樹狀圖或列表的方式表示出所有可能的結果,并求出摸出的恰好是“一紅一白”的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了了解某市九年級學生學業(yè)考試體育成績,現(xiàn)從中隨機抽取部分學生的體育成績進行分段(A:50; B:49-45;C:44-40;D:39-30;E:29-0).每段包含最高分,不包含最低分,統(tǒng)計表如下,統(tǒng)計圖如圖所示.

分數(shù)段

頻數(shù)()

百分比

根據(jù)上面提供的信息,回答下列問題:

(1)在統(tǒng)計表中,的值為___, 的值為__,并將統(tǒng)計圖補充完整.

(2)成績在40分以上定為優(yōu)秀,那么該市今年10440名九年級學生中體育成績?yōu)閮?yōu)秀的學生約有多少名?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某人共收集郵票若干張,其中2000年以前的國內(nèi)外發(fā)行的郵票,2001年國內(nèi)發(fā)行的,2002年國內(nèi)發(fā)行的,此外尚有不足100張的國外郵票.求該人共有多少張郵票.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系,A(a,0),B(b,0),C(﹣1,2),且|2a+b+1|+(a+2b﹣4)2=0.

(1)求a,b的值;

(2)①在x軸的正半軸上存在一點M,使SCOM=ABC的面積,求出點M的坐標;

在坐標軸的其他位置是否存在點M,使COM的面積=ABC的面積仍然成立?若存在,請直接寫出符合條件的點M的坐標為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知ABCD.

如圖1,你能得出∠A+E+C=360°嗎?

如圖2,猜想出∠A.C、E的關系式并說明理由.

如圖3,A.C、E的關系式又是什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“校園手機”現(xiàn)象越來越受到社會的關注.“寒假”期間,某校小記者隨機調(diào)查了某地區(qū)若干名學生和家長對中學生帶手機現(xiàn)象的看法,統(tǒng)計整理并制作了如下的統(tǒng)計圖:

(1)求這次調(diào)查的家長人數(shù),并補全圖1;

(2)求圖2中表示家長“贊成”的圓心角的度數(shù);

(3)已知某地區(qū)共6500名家長,估計其中反對中學生帶手機的大約有多少名家長?

查看答案和解析>>

同步練習冊答案