【題目】已知圖甲是一個(gè)長為2m,寬為2n的長方形,沿圖甲中虛線用剪刀均勻分成四小塊長方形,然后按圖乙的形狀拼成一個(gè)正方形.
(1)圖乙中陰影部分正方形的邊長為 (用含字母m,n的整式表示).
(2)請用兩種不同的方法求圖乙中陰影部分的面積.
方法一: ;
方法二: .
(3)觀察圖乙,并結(jié)合(2)中的結(jié)論,你能寫出下列三個(gè)整式:(m+n)2,(m﹣n)2,mn之間的等量關(guān)系嗎?
(4)根據(jù)(3)題中的等量關(guān)系,解決如下問題:若a+b=9,ab=5,求(a﹣b)2的值.
【答案】(1)m-n;(2)方法一:(m+n)﹣4mn。方法二:(m-n);
(3)(m+n)2﹣4mn=(m﹣n)2;(4)61.
【解析】
平均分成后,每個(gè)小長方形的長為m,寬為n.
(1)正方形的邊長=小長方形的長-寬;
(2)第一種方法為:大正方形面積-4個(gè)小長方形面積,第二種表示方法為:陰影部分為小正方形的面積;
(3)利用(2)的結(jié)論,可得(m+n)2-4mn=(m-n)2;
(4)根據(jù)(3)的結(jié)論,可得(a-b)2=(a+b)2-4ab,代入已知值可求解.
解:(1)圖乙中陰影部分正方形的邊長為m﹣n;
(2)方法一:(m+n)2﹣4mn;
方法二:(m﹣n)2;
(3)由(2)可得:(m+n)2﹣4mn=(m﹣n)2;
(4)由(3)可得:
(a﹣b)2=(a+b)2﹣4ab,
∵a+b=9,ab=5,
∴(a﹣b)2=81﹣20=61.
故答案為:m﹣n;(m+n)2﹣4mn;(m﹣n)2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示是長方體的平面展開圖.
(1)將平面展開圖折疊成一個(gè)長方體,與字母N重合的點(diǎn)有哪幾個(gè)?
(2)若AG=CK=14 cm,F(xiàn)G=2 cm,LK=5 cm,則該長方體的表面積和體積分別是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在足球比賽中,甲、乙兩名隊(duì)員互相配合向?qū)Ψ角蜷TMN進(jìn)攻,當(dāng)甲帶球沖到A點(diǎn)時(shí),乙已跟隨沖到B點(diǎn),如圖24-1-4-12.此時(shí),甲自己直接射門好,還是迅速將球傳給乙,讓乙射門好?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)B、E分別在直線AC和DF上,若∠AGB=∠EHF,∠C=∠D,可以證明∠A=∠F.請完成下面證明過程中的各項(xiàng)“填空”.
證明:∵∠AGB=∠EHF(理由: )
∠AGB= (對頂角相等)
∴∠EHF=∠DGF,∴DB∥EC(理由: )
∴ =∠DBA(兩直線平行,同位角相等)
又∵∠C=∠D,∴∠DBA=∠D,
∴DF∥ (內(nèi)錯(cuò)角相等,兩直線平行)
∴∠A=∠F(理由: ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在數(shù)軸上有A、B、C、D四個(gè)點(diǎn),且線段AB=4,CD=6,已知A表示的數(shù)是﹣10,C表示的數(shù)是8,若線段AB以每秒6個(gè)單位長度的速度,線段CD以每秒2個(gè)單位長度的速度在數(shù)軸上運(yùn)動(dòng)(A在B左側(cè),C在D左側(cè))
(1)B,D兩點(diǎn)所表示的數(shù)分別是 、 ;
(2)若線段AB向右運(yùn)動(dòng),同時(shí)線段CD向左運(yùn)動(dòng),經(jīng)過多少秒時(shí),BC=2;
(3)若線段AB、CD同時(shí)向右運(yùn)動(dòng),同時(shí)點(diǎn)P從原點(diǎn)出發(fā)以每秒1個(gè)單位長度的速度向右運(yùn)動(dòng),經(jīng)過多少秒時(shí),點(diǎn)P到點(diǎn)A,C的距離相等?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E是AB上一點(diǎn),F(xiàn)是AD延長線上一點(diǎn),且DF=BE.
(1)求證:CE=CF;
(2)若點(diǎn)G在AD上,且∠GCE=45°,則GE=BE+GD成立嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)C在線段AB上,AC=8 cm,CB=6 cm,點(diǎn)M、N分別是AC、BC的中點(diǎn).
(1)求線段MN的長;
(2)若C為線段AB上任一點(diǎn),滿足AC+CB=a cm,其它條件不變,你能猜想MN的長度嗎?并說明理由;
(3)若C在線段AB的延長線上,且滿足AC﹣BC=bcm,M、N分別為AC、BC的中點(diǎn),你能猜想MN的長度嗎?請畫出圖形,寫出你的結(jié)論,并說明理由;
(4)你能用一句簡潔的話,描述你發(fā)現(xiàn)的結(jié)論嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列哪組條件能夠判別四邊形ABCD是平行四邊形?( 。
A. AB∥CD,AD=BC B. AB=CD,AD=BC
C. ∠A=∠B,∠C=∠D D. AB=AD,CB=CD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為了測量某建筑物CE的高度,先在地面上用測角儀自A處測得建筑物頂部的仰角是45°,然后在水平地面上向建筑物前進(jìn)了20m,此時(shí)自B處測得建筑物頂部的仰角是60°,已知測角儀的高度是1m,請你計(jì)算出該建筑物的高度(取 ≈1.732,結(jié)果精確到1m).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com