【題目】如圖ABC內(nèi)接于O,BC是直徑,O的切線PACB的延長(zhǎng)線于點(diǎn)POEACAB于點(diǎn)FPA于點(diǎn)E,連接BE

1)判斷BEO的位置關(guān)系并說(shuō)明理由;

2)若O的半徑為4,BE=3AB的長(zhǎng)

【答案】(1)BE是⊙O的切線;(2)

【解析】試題分析:1)結(jié)論:BE是⊙O的切線.首先證明∠OAP=90°,再證明△EOB≌△EOA,推出∠OBE=OAE即可解決問(wèn)題.
2)由(1)可知AB=2BF,在RtBEO中,∠OBE=90°,OB=4BE=3,可得OE==5,由BEOB=OEBF,可得BF=,由此即可解決問(wèn)題.

試題解析:1BE是⊙O的切線.
理由:如圖連接OA

PA是切線,
PAOA,
∴∠OAP=90°
BC是直徑,
∴∠BAC=90°
OEAC,
∴∠OFB=BAC=90°,
OEAB,
BF=FA,
OB=OA,
∴∠EOB=EOA
在△EOB和△EOA中,
,

∴△EOB≌△EOA,
∴∠OBE=OAE=90°,
OBBE
BE是⊙O的切線.
2)由(1)可知AB=2BF
RtBEO中,∵∠OBE=90°,OB=8,BE=6
OE==5,
BEOB=OEBF
BF=,
AB=2BF=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某花店準(zhǔn)備購(gòu)進(jìn)甲、乙兩種花卉,若購(gòu)進(jìn)甲種花卉20盆,乙種花卉50盆,需要720元;若購(gòu)進(jìn)甲種花卉40盆,乙種花卉30盆,需要880元.

(1)求購(gòu)進(jìn)甲、乙兩種花卉,每盆各需多少元?

(2)該花店銷售甲種花卉每盆可獲利6元,銷售乙種花卉每盆可獲利1元,現(xiàn)該花店準(zhǔn)備拿出800元全部用來(lái)購(gòu)進(jìn)這兩種花卉,設(shè)購(gòu)進(jìn)甲種花卉x盆,全部銷售后獲得的利潤(rùn)為W元,求W與x之間的函數(shù)關(guān)系式;

(3)在(2)的條件下,考慮到顧客需求,要求購(gòu)進(jìn)乙種花卉的數(shù)量不少于甲種花卉數(shù)量的6倍,且不超過(guò)甲種花卉數(shù)量的8倍,那么該花店共有幾種購(gòu)進(jìn)方案?在所有的購(gòu)進(jìn)方案中,哪種方案獲利最大?最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有理數(shù)a、b、c在數(shù)軸上的位置如圖所示.

1)化簡(jiǎn):|a|   |b|   ;

2)比較大小ac   0,a+b   0

3)將a,b,c,﹣a,﹣b,﹣c按從小到大的順序,用“<”號(hào)連接.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】出租車司機(jī)小李某天上午營(yíng)運(yùn)時(shí)是在東西走向的大街上進(jìn)行的,如果規(guī)定向東為正,向西為負(fù),他這天上午所接六位乘客的行車?yán)锍蹋▎挝唬?/span>)如下:

,,,,,

問(wèn):(1)將最后一位乘客送到目的地時(shí),小李在什么位置?

2)若汽車耗油量為(升/千米),這天上午小李接送乘客,出租車共耗油多少升?

3)若出租車起步價(jià)為8元,起步里程為(包括),超過(guò)部分每千米1.2元,問(wèn)小李這天上午共得車費(fèi)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店經(jīng)銷一種健身球,已知這種健身球的成本價(jià)為每個(gè)20元,市場(chǎng)調(diào)查發(fā)現(xiàn),該種健身球每天的銷售量y個(gè))與銷售單價(jià)x(元)有如下關(guān)系:y=﹣20x+80(20≤x≤40),設(shè)這種健身球每天的銷售利潤(rùn)為w元.

(1)求wx之間的函數(shù)關(guān)系式;

(2)該種健身球銷售單價(jià)定為多少元時(shí),每天的銷售利潤(rùn)最大?最大利潤(rùn)是多少元?

(3)如果物價(jià)部門規(guī)定這種健身球的銷售單價(jià)不高于28元,該商店銷售這種健身球每天要獲得150元的銷售利潤(rùn),銷售單價(jià)應(yīng)定為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線ABCD,將一塊三角板EFG如圖1所示,EFG的邊與直線AB、CD分別相交于M,N兩點(diǎn),∠F=90°,∠E=30°.

(1)求證:EMB+DNG=90°

(2)將另一塊三角板MPQ如圖2放置,MPQ的邊PQPM分別與直線CD相交于點(diǎn)R,EFGEG相交于點(diǎn)O,P=90°,PMQ=45°,直接寫出∠PMB與∠PRD的數(shù)量關(guān)系:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2020423日,是第25個(gè)世界讀書日.為了解學(xué)生每周閱讀時(shí)間,某校隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,根據(jù)調(diào)查結(jié)果,將閱讀時(shí)間x(單位:小時(shí))分成了4組,A0x2;B2x4;C4x6;D6x8,試結(jié)合圖中所給信息解答下列問(wèn)題:

1)這次隨機(jī)抽取了   名學(xué)生進(jìn)行調(diào)查;扇形統(tǒng)計(jì)圖中,扇形B的圓心角的度數(shù)為   

2)補(bǔ)全頻數(shù)分布直方圖;

3)若該校共有2000名學(xué)生,試估計(jì)每周閱讀時(shí)間不少于4小時(shí)的學(xué)生共有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某自行車廠計(jì)劃一周生產(chǎn)自行車2100輛,平均每天計(jì)制生產(chǎn)300輛,實(shí)際每天生產(chǎn)量與計(jì)劃量相比有出入,下表是某周的生產(chǎn)情況.(超過(guò)每天計(jì)劃生產(chǎn)數(shù)記為正,不足每天計(jì)劃生產(chǎn)數(shù)記為負(fù))

星期

每天超出計(jì)劃的量數(shù)

1)該廠星期四實(shí)際生產(chǎn)自行車______

2)該廠本周實(shí)際每天平均生產(chǎn)多少輛自行車?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①已知△ACB和△DCE為等腰直角三角形,按如圖的位置擺放,直角頂點(diǎn)

C重合.

(1)求證:AD=BE;

(2)將△DCE繞點(diǎn)C旋轉(zhuǎn)得到圖②,點(diǎn)A、DE在同一直線上時(shí),若CD=,BE=3,

AB 的長(zhǎng);

(3)將△DCE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得到圖③,若∠CBD=45°,AC=6,BD=3,求BE的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案