【題目】如圖,等邊中, 的角平分線, 上一點(diǎn),以為一邊且在下方作等邊,連接

)求證:

)延長, 上一點(diǎn),連接、使,若,求的長.

【答案】)證明見解析;()PQ=8.

【解析】試題分析

1)由△ABC、△DCE都是等邊三角形可得:AC=BC、CD=CE∠ACB=∠DCE=60°,從而可得∠ACD=∠BCE,這樣由“SAS”即可證得:△ACD≌△BCE;

2由等邊△ABC中,AO平分∠BAC可得∠CAD=BAC=30°,結(jié)合ACD≌△BCE可得∠CBE=30°過點(diǎn)CCHBQ于點(diǎn)H,由此可得CH=BC=3,RtCHQ中,由勾股定理可得HQ=4,結(jié)合CP=CQ可得PQ=2HQ=8.

試題解析

)∵, 均為等邊三角形,

,

,

,

中,

,

)∵等邊△ABC中,AO平分∠BAC,

∴∠CAD=BAC=30°.

如下圖,過點(diǎn)作,垂足為

由()知,

,

∴在中,

又∵CP=CQ,CHPQ,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)Py軸上,⊙Px軸于A,B兩點(diǎn),連接BP并延長交⊙P于點(diǎn)C,過點(diǎn)C的直線y2xbx軸于點(diǎn)D,且⊙P的半徑為,AB4.

(1)求點(diǎn)B,PC的坐標(biāo);(2)求證:CD是⊙P的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人在5次打靶測(cè)試中命中的環(huán)數(shù)如下:

甲:8,8,7,8,9

乙:5,9,7,10,9

(1)計(jì)算甲、乙兩人射擊成績的平均數(shù).

(2)計(jì)算甲、乙兩人的射擊成績的方差,并說明誰的成績更穩(wěn)定?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解學(xué)生參加戶外活動(dòng)的情況,和諧中學(xué)對(duì)學(xué)生每天參加戶外活動(dòng)的時(shí)間進(jìn)行抽樣調(diào)查,并將調(diào)查結(jié)果繪制成如圖兩幅不完整的統(tǒng)計(jì)圖,根據(jù)圖示,請(qǐng)回答下列問題:

(1)求被抽樣調(diào)查的學(xué)生有多少人?并補(bǔ)全條形統(tǒng)計(jì)圖;

(2)該校共有1850名學(xué)生,請(qǐng)估計(jì)該校每天戶外活動(dòng)時(shí)間超過1小時(shí)的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】楊陽同學(xué)沿一段筆直的人行道行走,在由A步行到達(dá)B處的過程中,通過隔離帶的空隙O,剛好瀏覽完對(duì)面人行道宣傳墻上的社會(huì)主義核心價(jià)值觀標(biāo)語,其具體信息匯集如下:如圖,ABOHCD,相鄰的平行線間的距離相等,AC,BD相交于O,ODCD.垂足為D,已知AB=18米,請(qǐng)根據(jù)上述信息求標(biāo)語CD的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請(qǐng)把下面證明過程補(bǔ)充完整:

已知:如圖,∠ADCABC,BEDF分別平行∠ABC、ADC,且∠12

求證:∠AC

證明:因?yàn)?/span>BE、DF分別平分∠ABC、ADC,(   ).

所以∠1ABC3ADC   ).

因?yàn)椤?/span>ABCADC(已知),

所以∠13   ),

因?yàn)椤?/span>12(已知),

所以∠23   ).

所以         ).

所以∠A   180°,C   180°   ).

所以∠AC   ).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平行四邊形ABCD的對(duì)角線ACBD交于O點(diǎn),分別過頂點(diǎn)B,C作兩對(duì)角線的平行線交于點(diǎn)E,得平行四邊形OBEC.

(1)如果四邊形ABCD為矩形(如圖),四邊形OBEC為何種四邊形?請(qǐng)證明你的結(jié)論;

(2)當(dāng)四邊形ABCD    形時(shí),四邊形OBEC是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】推理填空:

如圖,已知∠12,BC,可推得ABCD.理由如下:

∵∠12(已知),且∠14(____________),

∴∠24(等量代換)

CEBF(__________________________),

∴∠________3(______________________)

又∵∠BC(已知),

∴∠3B(等量代換)

ABCD(__________________________)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)P∠AOB的角平分線上的一點(diǎn),點(diǎn)D在邊OA上.愛動(dòng)腦筋的小剛經(jīng)過仔細(xì)觀察后,進(jìn)行如下操作:在邊OB上取一點(diǎn)E,使得PE=PD,這時(shí)他發(fā)現(xiàn)∠OEP∠ODP之間有一定的數(shù)量關(guān)系,請(qǐng)你寫出∠OEP∠ODP所有可能的數(shù)量關(guān)系是

查看答案和解析>>

同步練習(xí)冊(cè)答案