【題目】如圖,點Py軸上,⊙Px軸于A,B兩點,連接BP并延長交⊙P于點C,過點C的直線y2xbx軸于點D,且⊙P的半徑為AB4.

(1)求點B,PC的坐標(biāo);(2)求證:CD是⊙P的切線.

【答案】(1)B(20),P(0,1),C(2,2);(2)詳見解析.

【解析】試題分析

(1)Rt△OBP中,由勾股定理得到OP的長,連接AC,因為BC是直徑,所以∠BAC=90°,因為OP△ABC的中位線,所以OA=2,AC=2,即可求解;

(2)由點C的坐標(biāo)可得直線CD的解析式,則可求點D的坐標(biāo),從而可用SAS證△DAC≌△POB,進(jìn)而證∠ACB=90°.

試題解析

(1)解:如圖,連接CA.∵OP⊥AB,∴OB=OA=2.∵OP2+BO2=BP2,

∴OP2=5-4=1,OP=1.∵BC是⊙P的直徑,∴∠CAB=90°.

∵CP=BP,OB=OA,∴AC=2OP=2.∴B(2,0),P(0,1),C(-2,2).

(2)證明:∵直線y=2x+b過C點,∴b=6.∴y=2x+6.

∵當(dāng)y=0時,x=-3,∴D(-3,0).∴AD=1.∵OB=AC=2,AD=OP=1,

∠CAD=∠POB=90°,∴△DAC≌△POB.∴∠DCA=∠ABC.

∵∠ACB+∠CBA=90°,∴∠DCA+∠ACB=90°,即CD⊥BC.∴CD是⊙P的切線.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的正方形網(wǎng)格中,每個小正方形的邊長為1,格點三角形(頂點是網(wǎng)格線的交點的三角形)ABC的頂點AC的坐標(biāo)分別為(﹣4,5),(﹣1,3).

1)請在如圖所示的網(wǎng)格平面內(nèi)作出平面直角坐標(biāo)系;

2)請作出ABC關(guān)于y軸對稱的A1B1C1

3)寫出點B1的坐標(biāo);

4)求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】王老師家買了一套新房其結(jié)構(gòu)如圖所示(單位:m)他打算將臥室鋪上木地板,其余部分鋪上地磚

(1)木地板和地磚分別需要多少平方米?

(2)如果地磚的價格為每平方米x木地板的價格為每平方米3x,那么王老師需要花多少錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線CDEF相交于點O,COE=60°,將一直角三角尺AOB的直角頂點與O重合,OA平分∠COE

1)求∠BOD的度數(shù);

2)將三角尺AOB以每秒的速度繞點O順時針旋轉(zhuǎn),同時直線EF也以每秒的速度繞點O順時針旋轉(zhuǎn),設(shè)運動時間為t秒(0≤t≤40).

①當(dāng)t為何值時,直線EF平分∠AOB;

②若直線EF平分∠BOD,直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一拱形公路橋,圓弧形橋拱的水面跨度AB80 m,橋拱到水面的最大高度為20 m.(1)求橋拱的半徑.

(2)現(xiàn)有一艘寬60 m,頂部截面為長方形且高出水面9 m的輪船要經(jīng)過這座拱橋,這艘輪船能順利通過嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某商場為了吸引顧客,設(shè)立了一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤,并規(guī)定:每購買500元商品,就能獲得一次轉(zhuǎn)動轉(zhuǎn)盤的機會,如果轉(zhuǎn)盤停止后,指針上對準(zhǔn)500、200、100、50、10的區(qū)域,顧客就可以獲得500元、200元、100元、50元、10元的購物券一張(轉(zhuǎn)盤等分成20份)。

(1)小華購物450元,他獲得購物券的概率是多少?

(2)小麗購物600元,那么:

① 她獲得50元購物券的概率是多少?

② 她獲得100元以上(包括100元)購物券的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個大的等腰三角形能被分割為兩個小等腰三角形,則該大等腰三角形頂角的度數(shù)是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)的圖象交x軸于A(6,0),交正比例函數(shù)的圖象于點B,且點B在第三象限,它的橫坐標(biāo)為2,AOB的面積為6平方單位,求正比例函數(shù)和一次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊中, 的角平分線, 上一點,以為一邊且在下方作等邊,連接

)求證:

)延長, 上一點,連接、使,若,求的長.

查看答案和解析>>

同步練習(xí)冊答案