【題目】如圖,某建筑工程隊利用一面墻(墻的長度不限),用40米長的籬笆圍成一個長方形的倉庫.
(1)求長方形的面積是150平方米,求出長方形兩鄰邊的長;
(2)能否圍成面積220平方米的長方形?請說明理由.
【答案】(1)5m,30m或15m,10m;(2)不能,理由見解析.
【解析】
試題(1)首先設(shè)垂直于墻的一邊長為xm,得:長方形面積=150,進而求出即可;(2)利用一元二次方程的根的判別式判斷得出即可.
試題解析:(1)設(shè)垂直于墻的一邊長為xm,得:x(40﹣2x)=150,
即x2﹣20x+75=0,
解得:x1=5,x2=15,
當x=5時,40﹣2x=30,
當x=15時,40﹣2x=10,
∴長方形兩鄰邊的長為5m,30m或15m,10m;
(2)設(shè)垂直于墻的一邊長為ym,得:y(40﹣2y)=220,
即y2﹣20y+110=0,
∵△<0,
該方程無解
∴不能圍成面積是220平方米的長方形.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠ACB=90°,AD平分∠BAC,過點D作AC的平行線交AB于點O,DE⊥AD交AB于點E.
(1)求證:點O是AE的中點;
(2)若點F是AC邊上一點,且OF=OA,連接EF,如圖2,判斷EF與AC的位置關(guān)系,并說明理由;
(3)在(2)的條件下,試探究線段AE、AF、AC之間滿足的等量關(guān)系,并說明理由
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知甲村和乙村靠近公路a、b,為了發(fā)展經(jīng)濟,甲乙兩村準備合建一個工廠,經(jīng)協(xié)商,工廠必須滿足以下要求:
(1)到兩村的距離相等;
(2)到兩條公路的距離相等.你能幫忙確定工廠的位置嗎?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D為BC邊上一點,∠B=30°∠DAB=45°.(1)求∠DAC的度數(shù);(2)請說明:AB=CD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在長方形紙片ABCD中,AB=4,P是邊BC上一點,BP=3.將紙片沿AP折疊后,點B的對應(yīng)點記為點O,PO的延長線恰好經(jīng)過該長方形的頂點D.
(1)試判斷△ADP的形狀,并說明理由;
(2)求AD長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】中,,點為三條角平分線的交點,于,于,于,且,,,則點到三邊、、的距離為( )
A. 2cm,2cm,2cm B. 3cm,3cm,3cm
C. 4cm,4cm,4cm D. 2cm,3cm,5cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,是邊上的一點,是的中點,過點作的平行線交的延長線于點,且,連接.
與有什么數(shù)量關(guān)系,并說明理由;
①當滿足什么條件時,四邊形是矩形?并說明理由.
②當滿足什么條件時,四邊形是菱形?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=AC,∠BAC=90°,點D是直線AB上的一動點(不和A、B重合),BE⊥CD于E,交直線AC于F.
(1)點D在邊AB上時,證明:AB=FA+BD;
(2)點D在AB的延長線或反向延長線上時,(1)中的結(jié)論是否成立?若不成立,請畫出圖形并直接寫出正確結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,延長平行四邊形的邊到,使,連結(jié)交于點.
試說明:;
連結(jié),相交于,連結(jié),問與有怎樣的數(shù)量關(guān)系與位置關(guān)系,說明理由;
若,連接,四邊形是什么特殊四邊形,說明理由;
在的條件下,當滿足________條件時,四邊形是正方形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com