【題目】某種產(chǎn)品的原料提價(jià),因而廠家決定對(duì)產(chǎn)品提價(jià),現(xiàn)有三種方案:

方案(一):第一次提價(jià),第二次提價(jià);

方案(二):第一次提價(jià),第二次提價(jià);

方案(三):第一、二次提價(jià)均為

其中,是不相等的正數(shù).

有以下說法:

①方案(一)、方案(二)提價(jià)一樣;

②方案(一)的提價(jià)也有可能高于方案(二)的提價(jià);

③三種方案中,以方案(三)的提價(jià)最多;

④方案(三)的提價(jià)也有可能會(huì)低于方案(一)或方案(二)的提價(jià).

其中正確的有(

A.②③B.①③C.①④D.②④

【答案】B

【解析】

根據(jù)提價(jià)方案求出提價(jià)后三種方案的價(jià)格,得到方案(一)、方案(二)、方案(三)提價(jià)情況,進(jìn)行對(duì)比即可得解.

∵方案(一):

方案(二):

∴方案(一)、方案(二)提價(jià)一樣

∴①對(duì),②錯(cuò);

∵方案(三):

∴可知:

是不相等的正數(shù)

∴方案(三)提價(jià)最多

∴③對(duì),④錯(cuò)

∴①③對(duì)

故選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O中,AB是⊙O的直徑,G為弦AE的中點(diǎn),連接OG并延長交⊙O于點(diǎn)D,連接BDAE于點(diǎn)F,延長AE至點(diǎn)C,使得FC=BC,連接BC

(1)求證:BC是⊙O的切線;

(2)O的半徑為5,tanA=,求FD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是正方形的邊上一點(diǎn),下列條件中:;②;③.能使的有(

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,AD=2AB,,垂足在線段上,、分別是的中點(diǎn),連接、的延長線交于點(diǎn),則下列結(jié)論:①;②:③;④.其中,正確結(jié)論的個(gè)數(shù)是(

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形內(nèi)接于,為直徑,平分,相交于

求證:;

若直徑,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:若兩個(gè)分式的和為為正整數(shù)),則稱這兩個(gè)分式互為階分式,例如分式互為“3階分式”.

1)分式 互為“5階分式;

2)設(shè)正數(shù)互為倒數(shù),求證:分式互為“2階分式;

3)若分式互為“1階分式(其中為正數(shù)),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一艘船向正北航行,在A處看到燈塔S在船的北偏東30°的方向上,航行12海里到達(dá)B點(diǎn),在B處看到燈塔S在船的北偏東60°的方向上,此船繼續(xù)沿正北方向航行過程中距燈塔S的最近距離是_____海里(不近似計(jì)算).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的對(duì)角線BD經(jīng)過的坐標(biāo)原點(diǎn),矩形的邊分別平行于坐標(biāo)軸,點(diǎn)C在反比例函數(shù)y=的圖象上,若點(diǎn)A的坐標(biāo)為(﹣2,﹣3),則k的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)A(2,0),B(3,0)

1)在y軸上找一點(diǎn)C,使之滿足△ABC的面積為12,求點(diǎn)C的坐標(biāo).

2)在y軸上找一點(diǎn)D,使BDAB,求點(diǎn)D的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案