【題目】現(xiàn)有A,B兩種商品,已知買一件A商品比買一件B商品少30元,用160元全部購(gòu)買A商品的數(shù)量與用400元全部購(gòu)買B商品的數(shù)量相同.

1A,B兩種商品每件各是多少元?

2)如果小亮準(zhǔn)備購(gòu)買A,B兩種商品共10件,總費(fèi)用不超過380元,且不低于300元,那么一共有幾種購(gòu)買方案?

【答案】(1)A商品每件20元,B商品每件50元;(2)一共有3種購(gòu)買方案.

【解析】

1)設(shè)A商品每件x元,則B商品每件(30+x)元,根據(jù)“160元全部購(gòu)買A商品的數(shù)量與用400元全部購(gòu)買B商品的數(shù)量相同”列方程求解可得;

2)設(shè)購(gòu)買A商品a件,則購(gòu)買B商品共(10-a)件,列不等式組:,解之求出a的整數(shù)解,從而得出答案.

解:(1)設(shè)A商品每件元,則B商品每件.

根據(jù)題意,得.

解得.

經(jīng)檢驗(yàn),是原方程的解且符合題意.

.

所以A商品每件20元,B商品每件50.

2)設(shè)購(gòu)買A商品件,則購(gòu)買B商品件.

根據(jù)題意,得.

解得.

由于是整數(shù),所以可以取4,56,故一共有3種購(gòu)買方案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某水果商將一種高檔水果放在商場(chǎng)銷售,該種水果成本價(jià)為10,售價(jià)為40,每天可銷售20.調(diào)查發(fā)現(xiàn),銷售單價(jià)每下降1元,每天的銷售量將增加5

1)直接寫出每天的銷售量ykg與降價(jià)(元)之間的函數(shù)關(guān)系式;

2)降價(jià)多少元時(shí),每天的銷售額元最大,最大是多少元?(銷售額=售價(jià)×數(shù)量)

3)每銷售1水果,需向商場(chǎng)繳納柜臺(tái)費(fèi)元(),水果商計(jì)劃租賃柜臺(tái)20天,為了促銷,決定開展每天降價(jià)1活動(dòng),即從第1天開始,每天的銷售單價(jià)比前一天下降1元(第1天的銷售單價(jià)為39元),經(jīng)測(cè)算發(fā)現(xiàn),銷售的前11天,每天的利潤(rùn)元隨銷售天數(shù)為正整數(shù))的增大而增大,試確定的取值范圍.(利潤(rùn)=銷售額-成本-柜臺(tái)費(fèi))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:有代數(shù)式①;②;③;④.若從中隨機(jī)抽取兩個(gè),用“=”連接.

(1)寫出能得到的一元二次方程;

(2)(1)中得到的一元二次方程中挑選一個(gè)進(jìn)行解方程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店經(jīng)銷甲、乙兩種商品現(xiàn)有如下信息:信息1:甲、乙兩種商品的進(jìn)貨單價(jià)之和是3元;信息2:甲商品零售單價(jià)比進(jìn)貨單價(jià)多1元,乙商品零售單價(jià)比進(jìn)貨單價(jià)的2倍少1元;信息3:按零售單價(jià)購(gòu)買甲商品3件和乙商品2件,共付了12元.請(qǐng)根據(jù)以上信息,解答下列問題:

求甲、乙兩種商品的零售單價(jià);

該商店平均每天賣出甲商品500件和乙商品1200經(jīng)調(diào)查發(fā)現(xiàn),甲種商品零售單價(jià)每降元,甲種商品每天可多銷售100商店決定把甲種商品的零售單價(jià)下降在不考慮其他因素的條件下,當(dāng)m為多少時(shí),商店每天銷售甲、乙兩種商品獲取的總利潤(rùn)為1700元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說法正確的是( )

A.?dāng)S一枚均勻的骰子,骰子停止轉(zhuǎn)動(dòng)后,6點(diǎn)朝上是必然事件

B.甲、乙兩人在相同條件下各射擊10次,他們的成績(jī)平均數(shù)相同,方差分別是,,則甲的射擊成績(jī)較穩(wěn)定

C.明天降雨的概率為,表示明天有半天都在降雨

D.了解一批電視機(jī)的使用壽命,適合用普查的方式

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)yax2+bx+ca≠0),經(jīng)過點(diǎn)(1.0),對(duì)稱軸l如圖所示,若Ma+bc,N2abPa+c,則MN,P中,值小于0的數(shù)有( 。﹤(gè).

A.2B.1C.0D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線經(jīng)過點(diǎn),,點(diǎn)中點(diǎn),連接,并延長(zhǎng)于點(diǎn)

1)求拋物線的表達(dá)式;

2)若拋物線與拋物線關(guān)于軸對(duì)稱,在拋物線位于第二象限的部分上取一點(diǎn),過點(diǎn)軸,垂足為點(diǎn),是否存在這樣的點(diǎn),使得相似?若存在,請(qǐng)求出點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形ABCD的頂點(diǎn)A、B、C的坐標(biāo)分別為(0,5)(0,2)(4,2),直線l的解析式為y = kx+54kk > 0).

1)當(dāng)直線l經(jīng)過點(diǎn)B時(shí),求一次函數(shù)的解析式;

2)通過計(jì)算說明:不論k為何值,直線l總經(jīng)過點(diǎn)D

3)直線ly軸交于點(diǎn)M,點(diǎn)N是線段DM上的一點(diǎn), △NBD為等腰三角形,試探究:

當(dāng)函數(shù)y = kx+54k為正比例函數(shù)時(shí),點(diǎn)N的個(gè)數(shù)有 個(gè);

點(diǎn)M在不同位置時(shí),k的取值會(huì)相應(yīng)變化,點(diǎn)N的個(gè)數(shù)情況可能會(huì)改變,請(qǐng)直接寫出點(diǎn)N所有不同的個(gè)數(shù)情況以及相應(yīng)的k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1和圖2是兩張形狀和大小完全相同的方格紙,方格紙中每個(gè)小正方形的邊長(zhǎng)均為1,線段AC的兩個(gè)端點(diǎn)均在小正方形的頂點(diǎn)上.

(1)在圖1中畫出以AB為斜邊的直角三角形ABC,點(diǎn)C在小正方形的頂點(diǎn)上,且;

(2)在圖2中畫出以AB為一邊的等腰三角形ABD,點(diǎn)D在小正方形的頂點(diǎn)上,且的面積為16.

查看答案和解析>>

同步練習(xí)冊(cè)答案