【題目】如圖,小明坐在堤邊A處垂釣,河堤AC與水平面的夾角為30°,AC的長(zhǎng)為 米,釣竿AO與水平線的夾角為60°,其長(zhǎng)為3米,若AO與釣魚線OB的夾角為60°,求浮漂B與河堤下端C之間的距離.

【答案】解:延長(zhǎng)OA交BC于點(diǎn)D.

∵AO的傾斜角是60°,

∴∠ODB=60°.

∵∠ACD=30°,

∴∠CAD=180°﹣∠ODB﹣∠ACD=90°.

在Rt△ACD中,AD=ACtan∠ACD= = (米),

∴CD=2AD=3米,

又∵∠O=60°,

∴△BOD是等邊三角形,

∴BD=OD=OA+AD=3+ =4.5(米),

∴BC=BD﹣CD=4.5﹣3=1.5(米).

答:浮漂B與河堤下端C之間的距離為1.5米.


【解析】延長(zhǎng)OA交BC于點(diǎn)D.先由傾斜角定義及三角形內(nèi)角和定理求出∠CAD=180°﹣∠ODB﹣∠ACD=90°.解Rt△ACD,得出AD的長(zhǎng)度CD的長(zhǎng)度,再證明△BOD是等邊三角形,得BD=OD=OA+AD =4.5(米),然后根據(jù)BC=BD﹣CD得出答案。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】三角形ABC(記作△ABC)在8×8方格中,位置如圖所示,A(-3,1),B(-2,4).

1)請(qǐng)你在方格中建立直角坐標(biāo)系,并寫出C點(diǎn)的坐標(biāo);

2)把△ABC向下平移1個(gè)單位長(zhǎng)度,再向右平移2個(gè)單位長(zhǎng)度,請(qǐng)你畫出平移后的△A1B1C1,若△ABC內(nèi)部一點(diǎn)P的坐標(biāo)為(a,b),則點(diǎn)P的對(duì)應(yīng)點(diǎn)P1的坐標(biāo)是

3)在x軸上存在一點(diǎn)D,使△DB1C1的面積等于3,求滿足條件的點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】實(shí)數(shù)a,b在數(shù)軸上對(duì)應(yīng)點(diǎn)的位置如圖所示,化簡(jiǎn)|a|+ 的結(jié)果是( )

A.﹣2a+b
B.2a﹣b
C.﹣b
D.b

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°,得到ABCD′,若點(diǎn)B′與點(diǎn)B是對(duì)應(yīng)點(diǎn),若點(diǎn)B′恰好落在BC邊上,則∠C=( )

A. 105°B. 120°C. 135°D. 150°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)得到的.連接BE、CF相交于點(diǎn)D.

(1)求證:BE=CF.

(2)當(dāng)四邊形ACDE為菱形時(shí),求BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,以ABC的三邊為邊在BC的同側(cè)分別作三個(gè)等邊三角形ABD,BCEACF,請(qǐng)解答下列問題:

1)求證:四邊形AFED是平行四邊形;

2)當(dāng)ABC滿足 時(shí),四邊形AFED是矩形.

當(dāng)ABC滿足 時(shí),四邊形AFED是菱形.

當(dāng)ABC滿足 時(shí),四邊形AFED是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】直線MN與直線PQ相交于O,∠POM60°,點(diǎn)A在射線OP上運(yùn)動(dòng),點(diǎn)B在射線OM上運(yùn)動(dòng).

(1)如圖1,∠BAO=70°,已知AE、BE分別是∠BAO和∠ABO角的平分線,試求出∠AEB的度數(shù).

(2)如圖2,已知AB不平行CD,AD、BC分別是∠BAP和∠ABM的角平分線,又DE、CE分別是∠ADC和∠BCD的角平分線,點(diǎn)AB在運(yùn)動(dòng)的過程中,∠CED的大小是否會(huì)發(fā)生變化?若發(fā)生變化,請(qǐng)說明理由;若不發(fā)生變化,試求出其值.

(3)在(2)的條件下,在△CDE中,如果有一個(gè)角是另一個(gè)角的2倍,請(qǐng)直接寫出∠DCE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】填寫下列空格完成證明:如圖, EFAD 1 2 , BAC 70 ,求AGD

解:∵ EFAD

2 .(

1 2 ,

1 3.(

.(

BAC 180 .(

BAC 70

AGD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】新冠肺炎疫情期間,某口罩廠為生產(chǎn)更多的口罩滿足疫情防控需求,決定撥款456萬(wàn)元購(gòu)進(jìn)AB兩種型號(hào)的口罩機(jī)共30臺(tái).兩種型號(hào)口罩機(jī)的單價(jià)和工作效率分別如下表:

單價(jià)/萬(wàn)元

工作效率/(只/h

A種型號(hào)

16

4000

B種型號(hào)

14.8

3000

1)求購(gòu)進(jìn)AB兩種型號(hào)的口罩生產(chǎn)線各多少臺(tái).

2)現(xiàn)有200萬(wàn)只口罩的生產(chǎn)任務(wù),計(jì)劃安排新購(gòu)進(jìn)的口罩機(jī)共15臺(tái)同時(shí)進(jìn)行生產(chǎn).若工廠的工人每天工作8h,則至少租用A種型號(hào)的口罩機(jī)多少臺(tái)才能在5天內(nèi)完成任務(wù)?

查看答案和解析>>

同步練習(xí)冊(cè)答案