【題目】如圖1,拋物線y=ax2+bx+3交x軸于點A(﹣1,0)和點B(3,0).
(1)求該拋物線所對應(yīng)的函數(shù)解析式;
(2)如圖2,該拋物線與y軸交于點C,頂點為F,點D(2,3)在該拋物線上.
①求四邊形ACFD的面積;
②點P是線段AB上的動點(點P不與點A、B重合),過點P作PQ⊥x軸交該拋物線于點Q,連接AQ、DQ,當(dāng)△AQD是直角三角形時,求出所有滿足條件的點Q的坐標(biāo).
【答案】(1)y=﹣x2+2x+3;(2)①S四邊形ACFD= 4;②Q點坐標(biāo)為(1,4)或(,)或(,).
【解析】
此題涉及的知識點是拋物線的綜合應(yīng)用,難度較大,需要有很好的邏輯思維,解題時先根據(jù)已知點的坐標(biāo)列方程求出函數(shù)解析式,然后再根據(jù)解析式和已知條件求出四邊形的面積和點的坐標(biāo)。
(1)由題意可得,解得,
∴拋物線解析式為y=﹣x2+2x+3;
(2)①∵y=﹣x2+2x+3=﹣(x﹣1)2+4,
∴F(1,4),
∵C(0,3),D(2,3),
∴CD=2,且CD∥x軸,
∵A(﹣1,0),
∴S四邊形ACFD=S△ACD+S△FCD=×2×3+×2×(4﹣3)=4;
②∵點P在線段AB上,
∴∠DAQ不可能為直角,
∴當(dāng)△AQD為直角三角形時,有∠ADQ=90°或∠AQD=90°,
i.當(dāng)∠ADQ=90°時,則DQ⊥AD,
∵A(﹣1,0),D(2,3),
∴直線AD解析式為y=x+1,
∴可設(shè)直線DQ解析式為y=﹣x+b′,
把D(2,3)代入可求得b′=5,
∴直線DQ解析式為y=﹣x+5,
聯(lián)立直線DQ和拋物線解析式可得,解得或,
∴Q(1,4);
ii.當(dāng)∠AQD=90°時,設(shè)Q(t,﹣t2+2t+3),
設(shè)直線AQ的解析式為y=k1x+b1,
把A、Q坐標(biāo)代入可得,解得k1=﹣(t﹣3),
設(shè)直線DQ解析式為y=k2x+b2,同理可求得k2=﹣t,
∵AQ⊥DQ,
∴k1k2=﹣1,即t(t﹣3)=﹣1,解得t=,
當(dāng)t=時,﹣t2+2t+3=,
當(dāng)t=時,﹣t2+2t+3=,
∴Q點坐標(biāo)為(,)或(,);
綜上可知Q點坐標(biāo)為(1,4)或(,)或(,).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=3,BC=4,將對角線AC繞對角線交點O旋轉(zhuǎn),分別交邊AD、BC于點E、F,點P是邊DC上的一個動點,且保持DP=AE,連接PE、PF,設(shè)AE=x(0<x<3).
(1)填空:PC= ,FC= ;(用含x的代數(shù)式表示)
(2)求△PEF面積的最小值;
(3)在運動過程中,PE⊥PF是否成立?若成立,求出x的值;若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點C在以AB為直徑的⊙O上,BD與過點C的切線垂直于點D,BD與⊙O交于點E.
(1)求證:BC平分∠DBA;
(2)連接AE和AC,若cos∠ABD=,OA=m,請寫出求四邊形AEDC面積的思路.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線的部分圖象如圖所示,與x軸的一個交點坐標(biāo)為,拋物線的對稱軸是下列結(jié)論中:
;;方程有兩個不相等的實數(shù)根;拋物線與x軸的另一個交點坐標(biāo)為;若點在該拋物線上,則.
其中正確的有
A. 5個 B. 4個 C. 3個 D. 2個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠B=30°,以點A為圓心,任意長為半徑畫弧分別交AB,AC于點M和N,再分別以點M,N為圓心畫弧,兩弧交于點P,連結(jié)AP并延長交BC于點D,則下列說法中正確的個數(shù)是( 。
①AD是∠BAC的平分線
②∠ADC=60°
③△ABD是等腰三角形
④點D到直線AB的距離等于CD的長度.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知Rt△ABC中,∠ACB=90°,CA=CB=4,另有一塊等腰直角三角板的直角頂點放在C處,CP=CQ=2,將三角板CPQ繞點C旋轉(zhuǎn)(保持點P在△ABC內(nèi)部),連接AP、BP、BQ.
(1)如圖1求證:AP=BQ;
(2)如圖2當(dāng)三角板CPQ繞點C旋轉(zhuǎn)到點A、P、Q在同一直線時,求AP的長;
(3)設(shè)射線AP與射線BQ相交于點E,連接EC,寫出旋轉(zhuǎn)過程中EP、EQ、EC之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,點, 在反比例函數(shù)(m為常數(shù))的圖象上,連接AO并延長與圖象的另一支有另一個交點為點C,過點A的直線l與x軸的交點為點,過點C作CE∥x軸交直線l于點E.
(1)求m的值,并求直線l對應(yīng)的函數(shù)解析式;
(2)求點E的坐標(biāo);
(3)過點B作射線BN∥x軸,與AE交于點M (補(bǔ)全圖形),求證:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市射擊隊甲、乙兩名隊員在相同的條件下各射耙10次,每次射耙的成績情況如圖所示:
(1)請將下表補(bǔ)充完整:
(2)請從下列三個不同的角度對這次測試結(jié)果進(jìn)行分析:
①從平均數(shù)和方差相結(jié)合看, 的成績好些;
②從平均數(shù)和中位數(shù)相結(jié)合看, 的成績好些;
③若其他隊選手最好成績在9環(huán)左右,現(xiàn)要選一人參賽,你認(rèn)為選誰參加,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,O為坐標(biāo)原點,四邊形OABC為矩形,A(20,0),C(0,8),點D是OA的中點,點P在邊BC上運動,當(dāng)△ODP是腰長為10的等腰三角形時,則P點的坐標(biāo)為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com