【題目】已知Rt△ABC中,∠ACB=90°,CA=CB=4,另有一塊等腰直角三角板的直角頂點(diǎn)放在C處,CP=CQ=2,將三角板CPQ繞點(diǎn)C旋轉(zhuǎn)(保持點(diǎn)P在△ABC內(nèi)部),連接AP、BP、BQ.
(1)如圖1求證:AP=BQ;
(2)如圖2當(dāng)三角板CPQ繞點(diǎn)C旋轉(zhuǎn)到點(diǎn)A、P、Q在同一直線時(shí),求AP的長;
(3)設(shè)射線AP與射線BQ相交于點(diǎn)E,連接EC,寫出旋轉(zhuǎn)過程中EP、EQ、EC之間的數(shù)量關(guān)系.
【答案】(1)證明見解析(2) (3)EP+EQ= EC
【解析】
(1)由題意可得:∠ACP=∠BCQ,即可證△ACP≌△BCQ,可得 AP=CQ;
作 CH⊥PQ 于 H,由題意可求 PQ=2 ,可得 CH=,根據(jù)勾股定理可求
AH= ,即可求 AP 的長;
作 CM⊥BQ 于 M,CN⊥EP 于 N,設(shè) BC 交 AE 于 O,由題意可證△CNP≌△ CMQ,可得 CN=CM,QM=PN,即可證 Rt△CEM≌Rt△CEN,EN=EM,∠CEM=
∠CEN=45°,則可求得 EP、EQ、EC 之間的數(shù)量關(guān)系.
解:(1)如圖 1 中,∵∠ACB=∠PCQ=90°,
∴∠ACP=∠BCQ 且 AC=BC,CP=CQ
∴△ACP≌△BCQ(SAS)
∴PA=BQ
如圖 2 中,作 CH⊥PQ 于 H
∵A、P、Q 共線,PC=2,
∴PQ=2,
∵PC=CQ,CH⊥PQ
∴CH=PH=
在 Rt△ACH 中,AH==
∴PA=AH﹣PH= -
解:結(jié)論:EP+EQ= EC
理由:如圖 3 中,作 CM⊥BQ 于 M,CN⊥EP 于 N,設(shè) BC 交 AE 于 O.
∵△ACP≌△BCQ,
∴∠CAO=∠OBE,
∵∠AOC=∠BOE,
∴∠OEB=∠ACO=90°,
∵∠M=∠CNE=∠MEN=90°,
∴∠MCN=∠PCQ=90°,
∴∠PCN=∠QCM,
∵PC=CQ,∠CNP=∠M=90°,
∴△CNP≌△CMQ(AAS),
∴CN=CM,QM=PN,
∴CE=CE,
∴Rt△CEM≌Rt△CEN(HL),
∴EN=EM,∠CEM=∠CEN=45°
∴EP+EQ=EN+PN+EM﹣MQ=2EN,EC=EN,
∴EP+EQ=EC
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,△DEF中,∠DEF=90°,∠D=30°,DF=16,B是斜邊DF上一動點(diǎn),過B作AB⊥DF于B,交邊DE(或邊EF)于點(diǎn)A,設(shè)BD=x,△ABD的面積為y,則y與x之間的函數(shù)圖象大致為( )
A. (A) B. (B) C. (C) D. (D)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,且∠ABC=60°,D為△ABC內(nèi)一點(diǎn) ,且DA=DB,E為△ABC外一點(diǎn),BE=AB,且∠EBD=∠CBD,連DE,CE. 下列結(jié)論:①∠DAC=∠DBC;②BE⊥AC ;③∠DEB=30°. 其中正確的是( )
A.①...B.①③...C.② ...D.①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=45°,F是高AD和BE的交點(diǎn),CD=4,則線段DF的長為( )
A.4B.5C.6D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等邊△ABC中.
(1)如圖1,P,Q是BC邊上兩點(diǎn),AP=AQ,∠BAP=20°,求∠AQB的度數(shù);
(2)點(diǎn)P,Q是BC邊上的兩個動點(diǎn)(不與B,C重合),點(diǎn)P在點(diǎn)Q的左側(cè),且AP=AQ,點(diǎn)Q關(guān)于直線AC的對稱點(diǎn)為M,連接AM,PM.
①依題意將圖2補(bǔ)全;
②求證:PA=PM.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=|x2﹣x﹣2|,直線y=kx+4恰好與y=|x2﹣x﹣2|的圖象只有三個交點(diǎn),則k的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+3經(jīng)過點(diǎn) B(﹣1,0),C(2,3),拋物線與y軸的焦點(diǎn)A,與x軸的另一個焦點(diǎn)為D,點(diǎn)M為線段AD上的一動點(diǎn),設(shè)點(diǎn)M的橫坐標(biāo)為t.
(1)求拋物線的表達(dá)式;
(2)過點(diǎn)M作y軸的平行線,交拋物線于點(diǎn)P,設(shè)線段PM的長為1,當(dāng)t為何值時(shí),1的長最大,并求最大值;(先根據(jù)題目畫圖,再計(jì)算)
(3)在(2)的條件下,當(dāng)t為何值時(shí),△PAD的面積最大?并求最大值;
(4)在(2)的條件下,是否存在點(diǎn)P,使△PAD為直角三角形?若存在,直接寫出t的值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,BC是⊙O的直徑,∠ABC=30°,過點(diǎn)B作⊙O的切線BD,與CA的延長線交于點(diǎn)D,與半徑AO的延長線交于點(diǎn)E,過點(diǎn)A作⊙O的切線AF,與直徑BC的延長線交于點(diǎn)F.
(1)求證:△ACF∽△DAE;
(2)若S△AOC=,求DE的長;
(3)連接EF,求證:EF是⊙O的切線.
【答案】(1) 見解析; (2)3 ;(3)見解析.
【解析】試題分析:(1)根據(jù)圓周角定理得到∠BAC=90°,根據(jù)三角形的內(nèi)角和得到∠ACB=60°根據(jù)切線的性質(zhì)得到∠OAF=90°,∠DBC=90°,于是得到∠D=∠AFC=30°由相似三角形的判定定理即可得到結(jié)論;
(2)根據(jù)S△AOC=,得到S△ACF=,通過△ACF∽△DAE,求得S△DAE=,過A作AH⊥DE于H,解直角三角形得到AH=DH=DE,由三角形的面積公式列方程即可得到結(jié)論;
(3)根據(jù)全等三角形的性質(zhì)得到OE=OF,根據(jù)等腰三角形的性質(zhì)得到∠OFG=(180°﹣∠EOF)=30°,于是得到∠AFO=∠GFO,過O作OG⊥EF于G,根據(jù)全等三角形的性質(zhì)得到OG=OA,即可得到結(jié)論.
試題解析:(1)證明:∵BC是⊙O的直徑,∴∠BAC=90°,∵∠ABC=30°,∴∠ACB=60°
∵OA=OC,∴∠AOC=60°,∵AF是⊙O的切線,∴∠OAF=90°,∴∠AFC=30°,∵DE是⊙O的切線,∴∠DBC=90°,∴∠D=∠AFC=30,∵∠DAE=ACF=120°,∴△ACF∽△DAE;
(2)∵∠ACO=∠AFC+∠CAF=30°+∠CAF=60°,∴∠CAF=30°,∴∠CAF=∠AFC,∴AC=CF,∴OC=CF,∵S△AOC=,∴S△ACF=,∵∠ABC=∠AFC=30°,∴AB=AF,∵AB=BD,∴AF=BD,∴∠BAE=∠BEA=30°,∴AB=BE=AF,∴,∵△ACF∽△DAE,∴=,∴S△DAE=,過A作AH⊥DE于H,∴AH=DH=DE,∴S△ADE=DEAH=×=,∴DE=;
(3)∵∠EOF=∠AOB=120°,∴∠OEB=∠AFO,在△AOF與△BOE中,∵∠OBE=∠OAF,∠OEB=∠AFO,OA=OB,∴△AOF≌△BEO,∴OE=OF,∴∠OFG=(180°﹣∠EOF)=30°,∴∠AFO=∠GFO,過O作OG⊥EF于G,∴∠OAF=∠OGF=90°,在△AOF與△OGF中,∵∠OAF=∠OGF,∠AFO=∠GFO,OF=OF,∴△AOF≌△GOF,∴OG=OA,∴EF是⊙O的切線.
【題型】解答題
【結(jié)束】
25
【題目】如圖,在平面直角坐標(biāo)系中,O為原點(diǎn),四邊形ABCO是矩形,點(diǎn)A,C的坐標(biāo)分別是A(0,2)和C(2,0),點(diǎn)D是對角線AC上一動點(diǎn)(不與A,C重合),連結(jié)BD,作DE⊥DB,交x軸于點(diǎn)E,以線段DE,DB為鄰邊作矩形BDEF.
(1)填空:點(diǎn)B的坐標(biāo)為 ;
(2)是否存在這樣的點(diǎn)D,使得△DEC是等腰三角形?若存在,請求出AD的長度;若不存在,請說明理由;
(3)①求證:;
②設(shè)AD=x,矩形BDEF的面積為y,求y關(guān)于x的函數(shù)關(guān)系式(可利用①的結(jié)論),并求出y的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直角坐標(biāo)系中一條圓弧經(jīng)過正方形網(wǎng)格的格點(diǎn)、、.若點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,
圓弧所在圓的圓心點(diǎn)的坐標(biāo)為________
點(diǎn)是否在經(jīng)過點(diǎn)、、三點(diǎn)的拋物線上;
在的條件下,求證:直線是的切線.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com