【題目】如圖1,我們把對(duì)角線互相垂直的四邊形叫做垂美四邊形.

(l)概念理解:如圖2,在四邊形ABCD中,AB=AD,CB=CD,問四邊形ABCD是垂美四邊形嗎?請(qǐng)說明理由.

(2)性質(zhì)探宄:試探索垂美四邊形ABCD兩組對(duì)邊AB,CD與BC,AD之間的數(shù)量關(guān)系.

猜想結(jié)論:(要求用文字語言敘述)

寫出證明過程(先畫出圖形,寫出已知、求證)

(3)問題解決:如圖3,分別以Rt△ACB的直角邊AC和斜邊AB為邊向外作正方形ACFG和正方形ABDE,連接CE,BG,GE,已知AC=4,AB=5,求GE長.

【答案】(1)四邊形ABCD是垂美四邊形,理由見解析;(2)猜想結(jié)論:垂美四邊形的兩組對(duì)邊的平方和相等,過程見解析;(3)GE=

【解析】試題分析:1)根據(jù)垂直平分線的判定定理可得,直線AC是線段BD的垂直平分線,結(jié)論得證;

2)根據(jù)垂直的定義可得∠AED=AEB=BEC=CED=90°,由勾股定理得AD2+BC2=AE2+DE2+BE2+CE2,進(jìn)而得到答案;

3)連接CG、BE,由題意易得GAB≌△CAE,可知∠ABG=AEC,進(jìn)而得到四邊形BCGE是垂美四邊形;接下來根據(jù)垂美四邊形的性質(zhì)、勾股定理以及(2)的結(jié)論進(jìn)行計(jì)算求解,即可完成解答.

試題解析:

解:(1)四邊形ABCD是垂美四邊形.

證明:∵AB=AD,

∴點(diǎn)A在線段BD的垂直平分線上,

CB=CD,

∴點(diǎn)C在線段BD的垂直平分線上,

∴直線AC是線段BD的垂直平分線,

ACBD,即四邊形ABCD是垂美四邊形;

2)猜想結(jié)論:垂美四邊形的兩組對(duì)邊的平方和相等.

如圖2,已知四邊形ABCD中,ACBD,垂足為E,

求證:AD2+BC2=AB2+CD2

證明:∵ACBD

∴∠AED=AEB=BEC=CED=90°,

由勾股定理得,AD2+BC2=AE2+DE2+BE2+CE2,

AB2+CD2=AE2+BE2+CE2+DE2,

AD2+BC2=AB2+CD2;

3)連接CG、BE,

∵∠CAG=BAE=90°

∴∠CAG+BAC=BAE+BAC,即∠GAB=CAE,

在△GAB和△CAE中,

,

∴△GAB≌△CAE

∴∠ABG=AEC,又∠AEC+AME=90°,

∴∠ABG+AME=90°,即CEBG,

∴四邊形CGEB是垂美四邊形,

由(2)得,CG2+BE2=CB2+GE2,

AC=4,AB=5,

BC=3,CG=4,BE=5,

GE2=CG2+BE2﹣CB2=73,

GE=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列運(yùn)算中,正確的是( )

A. x3x3=x6 B. 3x2+2x3=5x5 C. x23=x5 D. ab3=a3b

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將拋物線y=2x2向右平移3個(gè)單位,再向下平移5個(gè)單位,得到的拋物線的表達(dá)式為(
A.y=2(x﹣3)2﹣5
B.y=2(x+3)2+5
C.y=2(x﹣3)2+5
D.y=2(x+3)2﹣5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電腦公司銷售部為了定制下個(gè)月的銷售計(jì)劃,對(duì)20位銷售員本月的銷售量進(jìn)行了統(tǒng)計(jì)I繪制成如圖所示的統(tǒng)計(jì)圖,則這20位銷售人員本月銷售量的平均數(shù)、中位數(shù)、眾數(shù)分別是( )

A. 19,20,14 B. 18.4,20,20 C. 19, 20, 20 D. 18.4,25,20

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一個(gè)二次函數(shù)的圖象開口向上,頂點(diǎn)坐標(biāo)為(23),那么這個(gè)二次函數(shù)的解析式可以是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC中,∠C=90°,AC=6,BC=8.
(1)用直尺和圓規(guī)在邊BC上找一點(diǎn)D,使D到AB的距離等于CD.
(2)計(jì)算(1)中線段CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:(﹣23÷4﹣(﹣12018×|3|

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=﹣x+3x軸交于點(diǎn)C,與y軸交于點(diǎn)B,拋物線y=ax2+x+c經(jīng)過B、C兩點(diǎn).

1)求拋物線的解析式;

2)如圖,點(diǎn)E是直線BC上方拋物線上的一動(dòng)點(diǎn),當(dāng)△BEC面積最大時(shí),請(qǐng)求出點(diǎn)E的坐標(biāo)和△BEC面積的最大值?

3)在(2)的結(jié)論下,過點(diǎn)Ey軸的平行線交直線BC于點(diǎn)M,連接AM,點(diǎn)Q是拋物線對(duì)稱軸上的動(dòng)點(diǎn),在拋物線上是否存在點(diǎn)P,使得以PQ、A、M為頂點(diǎn)的四邊形是平行四邊形?如果存在,請(qǐng)直接寫出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線yx2x1x軸的一個(gè)交點(diǎn)為(m0),則代數(shù)式m2m2014的值為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案