【題目】已知拋物線yx2x1x軸的一個(gè)交點(diǎn)為(m0),則代數(shù)式m2m2014的值為_____

【答案】-2013

【解析】

利用“拋物線yx2x1x軸的一個(gè)交點(diǎn)為(m,0)”將“x=my=0代入拋物線的表達(dá)式中,得出m2m1,然后整體代入即可求出代數(shù)式的值.

解:∵拋物線yx2x1x軸的一個(gè)交點(diǎn)為(m,0),

m2m10,

m2m1

m2m201412014=﹣2013

故答案為:﹣2013

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,我們把對角線互相垂直的四邊形叫做垂美四邊形.

(l)概念理解:如圖2,在四邊形ABCD中,AB=AD,CB=CD,問四邊形ABCD是垂美四邊形嗎?請說明理由.

(2)性質(zhì)探宄:試探索垂美四邊形ABCD兩組對邊AB,CD與BC,AD之間的數(shù)量關(guān)系.

猜想結(jié)論:(要求用文字語言敘述)

寫出證明過程(先畫出圖形,寫出已知、求證)

(3)問題解決:如圖3,分別以Rt△ACB的直角邊AC和斜邊AB為邊向外作正方形ACFG和正方形ABDE,連接CE,BG,GE,已知AC=4,AB=5,求GE長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°BC的垂直平分線DEBCD,交ABEFDE上,并且AF=CE

1)求證:四邊形ACEF是平行四邊形;

2)當(dāng)∠B滿足什么條件時(shí),四邊形ACEF是菱形?請回答并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,延長平行四邊形ABCD的邊DC到點(diǎn)E,使CE=DC,連接AE,交BC于點(diǎn)F,連接AC、BE.

(1)求證:BF=CF;

(2)若AB=2,AD=4,且∠AFC=2∠D,求平行四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若﹣2amb43a2bn+1是同類項(xiàng),則m+n的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù) 的圖象與x軸與交于點(diǎn)A、點(diǎn)B(2,0),與y軸交于點(diǎn)C,∠ACB=90o

(1)求二次函數(shù)解析式;

(2)直線軸平行,分別交線段ABCB于點(diǎn)E、F,且與拋物線交于點(diǎn)P

①求線段PF取得最大值時(shí),OE的長;

②四邊形ACPB的面積是否存在最大值?如果存在求出此最大值和點(diǎn)P的坐標(biāo);如果不存在,說明理由.

(3)不解方程組,直接寫出的解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在三角形內(nèi)部,有一點(diǎn)P到三角形三個(gè)頂點(diǎn)的距離相等,則點(diǎn)P一定是(

A. 三角形三條角平分線的交點(diǎn) B. 三角形三條垂直平分線的交點(diǎn)

C. 三角形三條中線的交點(diǎn) D. 三角形三條高的交點(diǎn)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系中,點(diǎn)(2,4)在(  )

A. 第一象限B. 第二象限C. 第三象限D. 第四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果關(guān)于x的一元二次方程ax2+bx+c=0有兩個(gè)實(shí)數(shù)根,且其中一個(gè)根為另一個(gè)根的2倍,則稱這樣的方程為“倍根方程”.
(1)請問一元二次方程x2﹣3x+2=0是倍根方程嗎?如果是,請說明理由.
(2)若一元二次方程ax2+bx﹣6=0是倍根方程,且方程有一個(gè)根為2,求a、b的值?

查看答案和解析>>

同步練習(xí)冊答案