【題目】閱讀下列材料,然后解決問題:和、差、倍、分等問題中有著廣泛的應(yīng)用,
截長法與補(bǔ)短法在證明線段的和、差、倍、分等問題中有著廣泛的應(yīng)用.具體的做法是在某條線段上截取一條線段等于某特定線段,或?qū)⒛硹l線段延長,使之與某特定線段相等,再利用全等三角形的性質(zhì)等有關(guān)知識(shí)來解決數(shù)學(xué)問題.
(1)如圖1,在△ABC中,若AB=12,AC=8,求BC邊上的中線AD的取值范圍.
解決此問題可以用如下方法:延長AD到點(diǎn)E使DE=AD,再連接BE,把AB、AC、2AD集中在△ABE中.利用三角形三邊的關(guān)系即可判斷中線AD的取值范圍是 ;
(2)問題解決:
如圖2,在四邊形ABCD中,AB=AD,∠ABC+∠ADC=180°,E、F分別是邊BC,邊CD上的兩點(diǎn),且∠EAF=∠BAD,求證:BE+DF=EF.
(3)問題拓展:
如圖3,在△ABC中,∠ACB=90°,∠CAB=60°,點(diǎn)D是△ABC外角平分線上一點(diǎn),DE⊥AC交CA延長線于點(diǎn)E,F是AC上一點(diǎn),且DF=DB.求證:AC-AE=AF.
【答案】(1);(2)見解析;(3)見解析
【解析】
(1)延長AD到點(diǎn)E使DE=AD,連接BE,證明△ADC≌△EDB,根據(jù)全等三角形的性質(zhì)得到BE=AC,根據(jù)三角形三邊關(guān)系計(jì)算;
(2)延長CB到G,使BG=DF,證明△ABG≌△ADF,根據(jù)全等三角形的性質(zhì)得到AG=AF,∠GAB=∠FAD,證明△AEG≌△AEF,根據(jù)全等三角形的性質(zhì)證明;
(3)作DH⊥AB于H,在AB上截取BR=AF,分別證明Rt△DEF≌Rt△DHB,△DAF≌△DRB,根據(jù)全等三角形的性質(zhì)證明.
(1)延長AD到點(diǎn)E使DE=AD,連接BE,
在△ADC和△EDB中,
,
∴△ADC≌△EDB(SAS),
∴BE=AC=8,
AB-BE<AE<AB+BE,即21-8<2AD<12+8,
∴2<AD<10,
故答案為:2<AD<10;
(2)證明:延長CB到G,使BG=DF,
∵∠ABC+∠ADC=180°,∠ABC+∠ABG=180°,
∴∠ADC=∠ABG,
在△ABG和△ADF中,
,
∴△ABG≌△ADF(SAS),
∴AG=AF,∠GAB=∠FAD,
∵∠EAF=∠BAD,
∴∠FAD+∠BAE=∠GAB+∠BAE=∠BAD,
∴∠GAE=∠FAE,
在△AEG和△AEF中,
,
∴△AEG≌△AEF(SAS),
∴EF=GE,
∴EF=BE+BG=BE+DF;
(3)證明:作DH⊥AB于H,在AB上截取BR=AF,
∵∠CAB=60°,∠ACB=90°,
∴∠ABC=30°,
∴AB=2AC,
∵點(diǎn)D是△ABC外角平分線上一點(diǎn),DE⊥AC,DH⊥AB,
∴DE=DH,AH=AE,
在Rt△DEF和Rt△DHB中,
∴Rt△DEF≌Rt△DHB(HL)
∴∠DFA=∠DBA,
在△DAF和△DRB中,
,
∴△DAF≌△DRB(SAS)
∴DA=DR,
∴AH=HR=AE=AR,
∵AF=BR=AB-AR=2AC-2AE
∴AC-AE=AF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC 中,AB=BC,∠ABC=90°,F 為 AB 延長線上一點(diǎn),點(diǎn) E 在BC 上,且 AE=CF.
(1)求證: AE⊥CF;
(2)若∠CAE=25°,求∠ACF 的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在水果銷售旺季,某水果店購進(jìn)一優(yōu)質(zhì)水果,進(jìn)價(jià)為 20 元/千克,售價(jià)不低于 20 元/千克,且不超過 32 元/千克,根據(jù)銷售情況,發(fā)現(xiàn)該水果一天的銷售量 y(千克)與該天的售價(jià) x(元/千克)滿足如下表所示的一次函數(shù)關(guān)系.
銷售量 y(千克) | … | 34.8 | 32 | 29.6 | 28 | … |
售價(jià) x(元/千克) | … | 22.6 | 24 | 25.2 | 26 | … |
(1)某天這種水果的售價(jià)為 23.5 元/千克,求當(dāng)天該水果的銷售量.
(2)如果某天銷售這種水果獲利 150 元,那么該天水果的售價(jià)為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖7-①,圖7-②,圖7-③,圖7-④,…,是用圍棋棋子按照某種規(guī)律擺成的一行“廣”字,按照這種規(guī)律,第5個(gè)“廣”字中的棋子個(gè)數(shù)是________,第個(gè)“廣”字中的棋子個(gè)數(shù)是________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中AB=AC.
(1)作圖:在AC上有一點(diǎn)D,延長BD,并在BD的延長線上取點(diǎn)E,使AE=AB,連AE,作∠EAC的平分線AF,AF交DE于點(diǎn)F(用尺規(guī)作圖,保留作圖痕跡,不寫作法);
(2)在(1)的條件下,連接CF,求證:∠BAC=∠BFC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在矩形ABCD中,M、N分別是邊AD、BC的中點(diǎn),E、F分別是線段BM、CM的中點(diǎn)
(1)求證:△ABM≌△DCM
(2)判斷四邊形MENF是什么特殊四邊形,并證明你的結(jié)論;
(3)當(dāng)AD:AB= _時(shí),四邊形MENF是正方形(只寫結(jié)論,不需證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,AB=AC,點(diǎn)D是AB的中點(diǎn),連接CD,過B作BE⊥CD交CD的延長線于點(diǎn)E,連接AE,過A作AF⊥AE交CD于點(diǎn)F.
(1)求證:AE=AF;
(2)求證:CD=2BE+DE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),直線經(jīng)過點(diǎn),且與x軸、y軸分別交于C,B兩點(diǎn).
求n的值;
如圖2,點(diǎn)D與點(diǎn)C關(guān)于y軸對(duì)稱,點(diǎn)E在線段AB上,連接DE,過點(diǎn)E作交y軸于點(diǎn)F,連接DF,若,求點(diǎn)E的坐標(biāo);
如圖3,在的條件下,點(diǎn)G在線段OD上,連接AG交DF于點(diǎn)M,點(diǎn)H在線段CG上,連接AH交DF于點(diǎn)N,若,且,求線段GH的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,∠BAC=120°,AB=AC,BD為⊙O的直徑,AD=6,則BC=________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com