【題目】如圖所示,在長(zhǎng)方體中,為平面直角坐標(biāo)系的原點(diǎn),,兩點(diǎn)的坐標(biāo)分別為,,點(diǎn)在第一象限.
(1) 寫出點(diǎn)坐標(biāo);
(2) 若過(guò)點(diǎn)的直線,且把分為:兩部分,求出點(diǎn)的坐標(biāo);
(3) 在(2)的條件下,求出四邊形的面積;
(4) 若點(diǎn)是射線上的點(diǎn),請(qǐng)直接寫出,之間的數(shù)量關(guān)系.
【答案】(1) 點(diǎn)B的坐標(biāo)為(3,5);(2) 點(diǎn)D的坐標(biāo)為(3,4)或(3,1);(3) 或9;(4) ∠APB=∠CBP+∠OAP或∠APB=∠CBP-∠OAP.
【解析】
(1)根據(jù)矩形的性質(zhì)求出點(diǎn)B的橫坐標(biāo)與縱坐標(biāo)即可得解;
(2)分AD是4份和1份兩種情況討論求出AD的長(zhǎng),從而得到點(diǎn)D的坐標(biāo);
(3)根據(jù)梯形的面積公式列式計(jì)算即可得解.
(4)分點(diǎn)P在原點(diǎn)上方和在原點(diǎn)下方兩種情況求解:連接PB,PA,過(guò)點(diǎn)P作PE∥OA,根據(jù)平行線的性質(zhì)可求得結(jié)論.
(1)∵A,C兩點(diǎn)的坐標(biāo)分別為(3,0),(0,5),
∴點(diǎn)B的橫坐標(biāo)為3,縱坐標(biāo)為5,
∴點(diǎn)B的坐標(biāo)為(3,5);
(2)如圖,
若AD為4份,則AD=5×=4,
此時(shí)點(diǎn)D的坐標(biāo)為(3,4),
若AD為1份,則AD=5×=1,
此時(shí)點(diǎn)D的坐標(biāo)為(3,1),
綜上所述,點(diǎn)D的坐標(biāo)為(3,4)或(3,1);
(3)AD=4時(shí),四邊形OADC的面積=(4+5)×3=,
AD=1時(shí),四邊形OADC的面積=(1+5)×3=9,
綜上所述,四邊形OADC的面積為或9.
(4)①當(dāng)點(diǎn)P在原點(diǎn)上方時(shí),連接PB,PA,過(guò)點(diǎn)P作PE∥OA,交AB于點(diǎn)E,如圖,
∵四邊形OABC是矩形,
∴PE∥BC,
∴∠CBP=∠BPE,∠OAP=∠APE,
∵∠BPE+∠APE=∠CBP+∠OAP,即∠APB=∠CBP+∠OAP.
②當(dāng)點(diǎn)P在原點(diǎn)下方時(shí),連接PB,PA,過(guò)點(diǎn)P作PE∥OA,如圖,
∵四邊形OABC是矩形,
∴PE∥BC,
∴∠CBP=∠BPE,∠OAP=∠APE,
∵∠APB=∠BPE-∠APE,
∴∠APB=∠CBP-∠OAP.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖已知∠1=∠2,∠BAD=∠BCD,則下列結(jié)論:①AB∥CD,②AD∥BC,③∠B=∠D,④∠D=∠ACB,正確的有( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線的圖象過(guò)點(diǎn)C(0,1),頂點(diǎn)為Q(2,3),點(diǎn)D在x軸正半軸上,線段OD=OC.
(1)求拋物線的解析式;
(2)拋物線上是否存在點(diǎn)M,使得⊿CDM是以CD為直角邊的直角三角形?若存在,請(qǐng)求出M點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(3)將直線CD繞點(diǎn)C逆時(shí)針?lè)较蛐D(zhuǎn)45°所得直線與拋物線相交于另一點(diǎn)E,,連接QE.若點(diǎn)P是線段QE上的動(dòng)點(diǎn),點(diǎn)F是線段OD上的動(dòng)點(diǎn),問(wèn):在P點(diǎn)和F點(diǎn)的移動(dòng)過(guò)程中,△PCF的周長(zhǎng)是否存在最小值?若存在,求出這個(gè)最小值,若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,△OAB的位置如圖所示.將△OAB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得△OA1B1;再將△OA1B1繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得△OA2B2;再將△OA2B2繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得△OA3B3;…依此類推,第9次旋轉(zhuǎn)得到△OA9B9,則頂點(diǎn)A的對(duì)應(yīng)點(diǎn)A9的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角邊分別為3和4的直角三角形中,每多作一條斜邊上的高就增加一個(gè)三角形的內(nèi)切圓,依次類推,圖10中有10個(gè)直角三角形的內(nèi)切圓,它們的面積分別記為,,,…, ,則= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形網(wǎng)格中,、、均為格點(diǎn)(格點(diǎn)是指每個(gè)小正方形的頂點(diǎn)),將向下平移6個(gè)單位得到.利用網(wǎng)格點(diǎn)和直尺畫圖:
(1)在網(wǎng)格中畫出;
(2)畫出邊上的中線,邊上的高線;
(3)若的邊、分別與的邊、垂直,則的度數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)課外興趣活動(dòng)小組準(zhǔn)備圍建一個(gè)矩形苗圃園,其中一邊靠墻,另外三邊由長(zhǎng)為30米的籬笆圍成.已知墻長(zhǎng)為18米(如圖所示),設(shè)這個(gè)苗圃園垂直于墻的一邊長(zhǎng)為x米.
(1)若苗圃園的面積為72平方米,求x;
(2)若平行于墻的一邊長(zhǎng)不小于8米,這個(gè)苗圃園的面積有最大值和最小值嗎?如果有,求出最大值和最小值;如果沒(méi)有,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)課外興趣活動(dòng)小組準(zhǔn)備圍建一個(gè)矩形苗圃園,其中一邊靠墻,另外三邊由長(zhǎng)為30米的籬笆圍成.已知墻長(zhǎng)為18米(如圖所示),設(shè)這個(gè)苗圃園垂直于墻的一邊長(zhǎng)為x米.
(1)若苗圃園的面積為72平方米,求x;
(2)若平行于墻的一邊長(zhǎng)不小于8米,這個(gè)苗圃園的面積有最大值和最小值嗎?如果有,求出最大值和最小值;如果沒(méi)有,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校隨機(jī)抽取部分學(xué)生,調(diào)查每個(gè)月的零花錢消費(fèi)額,數(shù)據(jù)整理成如下的統(tǒng)計(jì)表和如圖①②所示的兩幅不完整的統(tǒng)計(jì)圖,已知圖①中A,E兩組對(duì)應(yīng)的小長(zhǎng)方形的高度之比為2:1請(qǐng)結(jié)合相關(guān)數(shù)據(jù)解答以下問(wèn)題:
(1)本次調(diào)查樣本的容量是______;
(2)補(bǔ)全頻數(shù)分布直方圖,并標(biāo)明各組的頻數(shù);
(3)若該學(xué)校有2500名學(xué)生,請(qǐng)估計(jì)月消費(fèi)零花錢不少于300元的學(xué)生的數(shù)量.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com