【題目】如圖所示,∠A0B=420,點P∠A0B內(nèi)一點,分別作出P點關(guān)于OA、OB的對稱點P1,P2,連接P1P2OAM,交OBN,P1P2=15,則△PMN的周長為________,∠MPN ________.

【答案】15 96°

【解析】

P點關(guān)于OA的對稱是點P1,P點關(guān)于OB的對稱點P2,故有PMP1MPNP2N由此即可得到PMN的周長.根據(jù)四邊形內(nèi)角和為360°,可得出∠P1PP2的度數(shù),根據(jù)等腰三角形的性質(zhì)和三角形外角的性質(zhì)可得出∠PNM+∠PMN的度數(shù),再根據(jù)三角形內(nèi)角和定理即可得出MPN的度數(shù)

P點關(guān)于OA的對稱是點P1,P點關(guān)于OB的對稱點P2,∴PMP1M,PNP2N,PP2OB,PP1OA,∴△PMN的周長為PM+PN+MNMN+P1M+P2NP1P2=15,∠P1PP2=360°-90°-90°-42°=138°,∠P2=∠NPP2,∠P1=∠P1PM,∴∠PNM=2∠P2,∠PMN=2∠P1,∴∠PNM+∠PMN=2∠P1+2∠P2=2(180°-∠P1PP2)=84°,∴∠MPN=180°-(∠PNM+∠PMN)=180°-84°=96°.

故答案為:15,96°.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD的頂點A、B、D均在⊙O上,請僅用無刻度的直尺按要求作圖.
(1)AB邊經(jīng)過圓心O,在圖(1)中作一條與AD邊平行的直徑;
(2)AB邊不經(jīng)過圓心O,DC與⊙O相切于點D,在圖(2)中作一條與AD邊平行的弦.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】制作一種產(chǎn)品,需先將材料加熱達到60 ℃后,再進行操作.設(shè)該材料溫度為y),從加熱開始計算的時間為xmin).據(jù)了解,當該材料加熱時,溫度y與時間x成一次函數(shù)關(guān)系;停止加熱進行操作時,溫度y與時間x成反比例關(guān)系(如圖).已知該材料在操作加熱前的溫度為15 ℃,加熱5分鐘后溫度達到60 ℃

1)分別求出將材料加熱和停止加熱進行操作時,yx的函數(shù)關(guān)系式;

2)根據(jù)工藝要求,當材料的溫度低于15 ℃時,須停止操作,那么從開始加熱到停止操作,共經(jīng)歷了多少時間?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線相交于點,的平分線,,

1)若,請求出的度數(shù);

2平分嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形紙片ABCD中,AB4,BC6,將ABC沿AC折疊,使點B落在點E處,CEAD于點F,則DF的長等于(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將一幅三角板拼成如圖所示的圖形,過點CCF平分∠DCEDE于點F

1)求證:CF∥AB

2)求∠DFC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,以邊長為8的正方形紙片ABCD的邊AB為直徑作⊙O,交對角線AC于點E.
(1)線段AE=;
(2)如圖2,以點A為端點作∠DAM=30°,交CD于點M,沿AM將四邊形ABCM剪掉,使Rt△ADM繞點A逆時針旋轉(zhuǎn)(如圖3),設(shè)旋轉(zhuǎn)角為α(0°<α<150°),旋轉(zhuǎn)過程中AD與⊙O交于點F.
①當α=30°時,請求出線段AF的長;
②當α=60°時,求出線段AF的長;判斷此時DM與⊙O的位置關(guān)系,并說明理由;
③當α= 時,DM與⊙O相切.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線ABCD 相交于點O,∠AOD=3BOD+20°.

(1)求∠BOD的度數(shù);

(2)O為端點引射線OE,OF ,射線OE平分∠BOD,且∠EOF= 90°,求∠BOF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖.ABC中,∠C=2B,DBC上一點,且ADAB,點EBD的中點,連結(jié)AE.

(1)求證:BD=2AC;

(2)若AE=6.5,AD=5,那么ABE的周長是多少?

查看答案和解析>>

同步練習冊答案