【題目】如圖1,以邊長為8的正方形紙片ABCD的邊AB為直徑作⊙O,交對角線AC于點E.
(1)線段AE=;
(2)如圖2,以點A為端點作∠DAM=30°,交CD于點M,沿AM將四邊形ABCM剪掉,使Rt△ADM繞點A逆時針旋轉(zhuǎn)(如圖3),設(shè)旋轉(zhuǎn)角為α(0°<α<150°),旋轉(zhuǎn)過程中AD與⊙O交于點F.
①當(dāng)α=30°時,請求出線段AF的長;
②當(dāng)α=60°時,求出線段AF的長;判斷此時DM與⊙O的位置關(guān)系,并說明理由;
③當(dāng)α= 時,DM與⊙O相切.
【答案】
(1)4
(2)解:①連接OA、OF,
由題意得,∠NAD=30°,∠DAM=30°,
故可得∠OAM=30°,∠DAM=30°,
則∠OAF=60°,
又∵OA=OF,
∴△OAF是等邊三角形,
∵OA=4,
∴AF=OA=4;
②連接B'F,此時∠NAD=60°,
∵AB'=8,∠DAM=30°,
∴AF=AB'cos∠DAM=8× =4 ;
此時DM與⊙O的位置關(guān)系是相離
③
∵AD=8,直徑的長度相等,
∴當(dāng)DM與⊙O相切時,點D在⊙O上,
故此時可得α=∠NAD=90°.
【解析】解:(1)連接BE,
∵AC是正方形ABCD的對角線,
∴∠BAC=45°,
∴△AEB是等腰直角三角形,
又∵AB=8,
∴AE=4 ;
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC內(nèi)接于⊙P,AB是⊙P的直徑,A(﹣1,0)C(3,2 ),BC的延長線交y軸于點D,點F是y軸上的一動點,連接FC并延長交x軸于點E.
(1)求⊙P的半徑;
(2)當(dāng)∠A=∠DCF時,求證:CE是⊙P的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,點E,F(xiàn)分別在BC,CD上,將△ABE沿AE折疊,使點B落在AC上的點B′處,又將△CEF沿EF折疊,使點C落在直線EB′與AD的交點C′處,DF= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,∠A0B=420,點P為∠A0B內(nèi)一點,分別作出P點關(guān)于OA、OB的對稱點P1,P2,連接P1P2交OA于M,交OB于N,P1P2=15,則△PMN的周長為________,∠MPN ________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠A=36°,∠C=72°,∠DBC=36°.
(1)求∠ABD的度數(shù)。
(2)求證:BC=AD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】紅紅和娜娜按如圖所示的規(guī)則玩一次“錘子、剪刀、布”游戲,下列命題中錯誤的是( )
A.紅紅不是勝就是輸,所以紅紅勝的概率為
B.紅紅勝或娜娜勝的概率相等
C.兩人出相同手勢的概率為
D.娜娜勝的概率和兩人出相同手勢的概率一樣
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB,CD,OE⊥AB,過點O畫直線MN⊥CD. 若點F是直線MN上任意一點(點O除外),且∠AOC=34°.求∠EOF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】江南農(nóng)場收割小麥,已知1臺大型收割機(jī)和3臺小型收割機(jī)1小時可以收割小麥1.4公頃,2臺大型收割機(jī)和5臺小型收割機(jī)1小時可以收割小麥2.5公頃.
(1)每臺大型收割機(jī)和每臺小型收割機(jī)1小時收割小麥各多少公頃?
(2)大型收割機(jī)每小時費用為300元,小型收割機(jī)每小時費用為200元,兩種型號的收割機(jī)一共有10臺,要求2小時完成8公頃小麥的收割任務(wù),且總費用不超過5400元,有幾種方案?請指出費用最低的一種方案,并求出相應(yīng)的費用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圖象中所反映的過程是:張強(qiáng)從家跑步去體育場,在那里鍛煉了一陣后,又 去早餐店吃早餐,然后散步走回家,其中 x 表示時間,y 表示張強(qiáng)離家的距離。根據(jù)圖象提供的信息,以下四個說法錯誤的是( )
A. 體育場離張強(qiáng)家2.5千米 B. 張強(qiáng)在體育場鍛煉了15分鐘
C. 體育場離早餐店4千米 D. 張強(qiáng)從早餐店回家的平均速度是3千米/小時
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com