【題目】如圖.△ABC中,∠C=2∠B,D是BC上一點,且AD⊥AB,點E是BD的中點,連結AE.
(1)求證:BD=2AC;
(2)若AE=6.5,AD=5,那么△ABE的周長是多少?
【答案】(1)見解析;(2)25
【解析】
(1)在Rt△ADB中,點E是BD的中點;根據(jù)直角三角形的性質,可得BE=AE,故∠AEC=2∠B=∠C;AE=AC,代換可得結論;
(2)根據(jù)勾股定理可得AB的長,結合(1)的結論,可得答案.
(1)證明:∵AD⊥AB,
∴∠BAD=90°,又點E是BD的中點,
∴
∴∠EAB=∠EBA,
∴∠AEC=2∠B,又∠C=2∠B,
∴∠AEC=∠C,
∴AE=AC,
∴BD=2AC;
(2)解:∵∠BAD=90°,點E是BD的中點,
∴BD=2AE=13,EA=EB=6.5,
由勾股定理得,
∴△ABE的周長=AB+AE+BE=12+6.5+6.5=25.
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,∠A0B=420,點P為∠A0B內一點,分別作出P點關于OA、OB的對稱點P1,P2,連接P1P2交OA于M,交OB于N,P1P2=15,則△PMN的周長為________,∠MPN ________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】江南農場收割小麥,已知1臺大型收割機和3臺小型收割機1小時可以收割小麥1.4公頃,2臺大型收割機和5臺小型收割機1小時可以收割小麥2.5公頃.
(1)每臺大型收割機和每臺小型收割機1小時收割小麥各多少公頃?
(2)大型收割機每小時費用為300元,小型收割機每小時費用為200元,兩種型號的收割機一共有10臺,要求2小時完成8公頃小麥的收割任務,且總費用不超過5400元,有幾種方案?請指出費用最低的一種方案,并求出相應的費用.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】根據(jù)圖形填空:
(1)若直線ED,BC被直線AB所截,則∠1和__________是同位角.
(2)若直線ED,BC被直線AF所截,則∠3和__________是內錯角.
(3)∠1和∠3是直線AB,AF被直線__________所截構成的__________角.
(4)∠2和∠4是直線__________,__________被直線BC所截構成的__________角.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩座城市的中心火車站A,B兩站相距360 km.一列動車與一列特快列車分別從A,B兩站同時出發(fā)相向而行,動車的平均速度比特快列車快54 km/h,當動車到達B站時,特快列車恰好到達距離A站135 km處的C站.求動車和特快列車的平均速度各是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,圖象中所反映的過程是:張強從家跑步去體育場,在那里鍛煉了一陣后,又 去早餐店吃早餐,然后散步走回家,其中 x 表示時間,y 表示張強離家的距離。根據(jù)圖象提供的信息,以下四個說法錯誤的是( )
A. 體育場離張強家2.5千米 B. 張強在體育場鍛煉了15分鐘
C. 體育場離早餐店4千米 D. 張強從早餐店回家的平均速度是3千米/小時
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在△ABC中,BD、CE分別是邊AC、AB上的高,點M是BC的中點,且MN⊥DE,垂足為點N
⑴求證:ME=MD;
⑵若BC=20cm,ED=12cm,求MN的長
⑶如果BD平分∠ABC,求證:AC=4EN.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等腰三角形ABC的底邊BC長為4,面積是16,腰AC的垂直平分線EF分別交AC,AB邊于E,F點若點D為BC邊的中點,點M為線段EF上一動點,則周長的最小值為
A. 6 B. 8 C. 10 D. 12
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com