【題目】如圖,點A、B、C、D在同一條直線上,點E、F分別在直線AD的兩側,且AE=DF,∠A=∠D,AB=DC.
(1)求證:△ACE≌△DBF;
(2)求證:四邊形BFCE是平行四邊形.
科目:初中數(shù)學 來源: 題型:
【題目】作圖題
(1)如圖:已知∠AOB和線段CD,求作一點P,使PC=PD,并且點P到∠AOB的兩邊距離相等(尺規(guī)作圖,不寫作法,保留作圖痕跡,寫出結論);
(2)如圖:在長度為1個單位長度的小正方形組成的正方形網(wǎng)格中,點A、B、C在小正方形的頂點上.
①在圖中畫出與關于直線成軸對稱的△A′B′C′;
②線段CC′被直線_________;
③△ABC的面積為_________;
④在直線上找一點P,使PB+PC的長最短.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】現(xiàn)用4個全等的直角三角形拼成如圖所示“弦圖”.Rt△ABC中,∠ACB=90°,若AC=b,BC=a,請你利用這個圖形解決下列問題:
(1)試說明a2+b2=c2;
(2)如果大正方形的面積是6,小正方形的面積是2,求(a+b)2的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)拼一拼,畫一畫:請你用4個長為a,寬為b的矩形拼成一個大正方形,并且正中間留下一個洞,這個洞恰好是一個小正方形。
(2)用不同方法計算中間的小正方形的面積,聰明的你能發(fā)現(xiàn)什么?
(3)當拼成的這個大正方形邊長比中間小正方形邊長多3cm時,它的面積就多24cm2,求中間小正方形的邊長。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=x2﹣(m+3)x+9的頂點C在x軸正半軸上,一次函數(shù)y=x+3與拋物線交于A、B兩點,與x、y軸分別交于D、E兩點.
(1)求m的值;
(2)求A、B兩點的坐標;
(3)當﹣3<x<1時,在拋物線上是否存在一點P,使得△PAB的面積是△ABC面積的2倍?若存在,請求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,已知點A(a,0),B(0,b),且a、b滿足=0, □ABCD的邊AD與y軸交于點E(0,2),且E為AD中點,雙曲線經(jīng)過C、D兩點.
(1)求k的值;
(2)點P在雙曲線上,點Q在y軸上,若以點A、B、P、Q為頂點的四邊形是平行四邊形,試求滿足要求的所有點P、Q的坐標;
(3)以線段AB為對角線作正方形AFBH(如圖3),點T是邊AF上一動點,M是HT的中點,MN⊥HT,交AB于N,當T在AF上運動時,的值是否發(fā)生改變?若改變,求出其變化范圍;若不改變,請求出其值,并給出你的證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】寒假期間,一些同學將要到A,B,C,D四個地方參加冬令營活動,現(xiàn)從這些同學中隨機調查了一部分同學.根據(jù)調查結果,繪制成了如下兩幅統(tǒng)計圖:
(1)扇形A的圓心角的度數(shù)為 , 若此次冬令營一共有320名學生參加,則前往C地的學生約有人,并將條形統(tǒng)計圖補充完整;
(2)若某姐弟兩人中只能有一人參加,姐弟倆決定用一個游戲來確定參加者:在4張形狀、大小完全相同的卡片上分別寫上﹣1,1,2,3四個整數(shù),先讓姐姐隨機地抽取一張,再由弟弟從余下的三張卡片中隨機地抽取一張.若抽取的兩張卡片上的數(shù)字之和小于3則姐姐參加,否則弟弟參加.用列表法或樹狀圖分析這種方法對姐弟倆是否公平?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖, 是半圓,連接AB,點O為AB的中點,點C,D在 上,連接AD,CO,BC,BD,OD.若∠COD=62°,且AD∥OC,則∠ABD的大小是( )
A.26°
B.28°
C.30°
D.32°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】根據(jù)題意解答
(1)如圖1,在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分別是BC、CD上的點,且∠EAF=60°,延長FD到點G,使DG=BE,連接AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,可得線段BE、EF、FD之間的數(shù)量關系為 .
(2)如圖2,在四邊形ABCD中,AB=AD,∠B+∠D=180°,E、F分別是BC、CD上的點,且∠EAF= ∠BAD,線段BE、EF、FD之間存在什么數(shù)量關系,為什么?
(3)如圖3,點A在點O的北偏西30°處,點B在點O的南偏東70°處,且AO=BO,點A沿正東方向移動249米到達E處,點B沿北偏東50°方向移動334米到達點F處,從點O觀測到E、F之間的夾角為70°,根據(jù)(2)的結論求E、F之間的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com