【題目】如圖,P是等邊三角形ABC內的一點,連結PA,PB,PC,以BP為邊作∠PBQ=60°,且BQ=BP,連結CQ.若PA∶PB∶PC=3∶4∶5,連結PQ,試判斷△PQC的形狀(

A. 直角三角形 B. 等腰三角形 C. 銳角三角形 D. 鈍角三角形

【答案】A

【解析】

連接PQ,先通過“邊角邊”證明△ABP≌△CBQ,得到AP=CQ,易證△BQP為等邊三角形,得到PQ=BP,再利用勾股定理的逆定理證明△PQC為直角三角形即可.

解:如圖,連接PQ,

∵∠ABP+∠PBC=60°,∠CBQ+∠PBC=60°,

∴∠ABP=∠CBQ,

在△ABP與△CBQ中,

∴△ABP≌△CBQ(SAS),

∴AP=CQ,

∵∠PBQ=60°,BQ=BP,

∴△BPQ為等邊三角形,即BP=PQ,

又∵PA∶PB∶PC=3∶4∶5,

可設PA=3a,PB=4a,PC=5a,

CQ=3a,PQ=4a,

∴CQ2+PQ2=9a2+16a2=25a2=PC2,

則△PQC為直角三角形.

故選:A.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】新農(nóng)村社區(qū)改造中,有一部分樓盤要對外銷售,某樓盤共23層,銷售價格如下:第八層樓房售價為4000/2,從第八層起每上升一層,每平方米的售價提高50元;反之,樓層每下降一層,每平方米的售價降低30元,已知該樓盤每套樓房面積均為1202

若購買者一次性付清所有房款,開發(fā)商有兩種優(yōu)惠方案:

方案一:降價8%,另外每套樓房贈送a元裝修基金;

方案二:降價10%,沒有其他贈送.

1)請寫出售價y(元/2)與樓層x1≤x≤23,x取整數(shù))之間的函數(shù)關系式;

2)老王要購買第十六層的一套樓房,若他一次性付清購房款,請幫他計算哪種優(yōu)惠方案更加合算.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為6的正方形ABCD中,E是邊CD的中點,將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連接AG.

(1)求證:△ABG≌△AFG;(2)求BG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,長方形 BCDE 的各邊分別平行于 x 軸或 y 軸,物體甲和物體乙分別由點 A20)同時出發(fā),沿長方形 BCDE 的邊作環(huán)繞運動,物體甲按逆時針方向以 1 個單位/秒勻速運動,物體乙按順時針方向以 2 個單位/秒勻速運動,則兩個物體運動后的第 2020 次相遇地點的坐標是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD的對角線AC、BD相交于點O,過點D作DE∥AC且DE= AC,連接AE交OD于點F,連接CE、OE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有四張背面一模一樣的卡片,卡片正面分別寫著一個函數(shù)關系式,分別是y=2x,y=x2﹣3(x>0),y= (x>0),y=﹣ (x<0),將卡片順序打亂后,隨意從中抽取一張,取出的卡片上的函數(shù)是y隨x的增大而增大的概率是( )
A.
B.
C.
D.1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結論中正確的是( )

A.a>0
B.3是方程ax2+bx+c=0的一個根
C.a+b+c=0
D.當x<1時,y隨x的增大而減小

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線l1:y=﹣x2+2x+3與x軸交于點A,B(點A在點B左邊),與y軸交于點C,拋物線l2經(jīng)過點A,與x軸的另一個交點為E(4,0),與y軸交于點D(0,﹣2).

(1)求拋物線l2的解析式;
(2)點P為線段AB上一動點(不與A、B重合),過點P作y軸的平行線交拋物線l1于點M,交拋物線l2于點N.
①當四邊形AMBN的面積最大時,求點P的坐標;
②當CM=DN≠0時,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一家商店進行門店升級需要裝修,裝修期間暫停營業(yè),若請甲乙兩個裝修組同時施工,8天可以完成,需付費用共3520元;若先請甲組單獨做6天,再請乙組單獨做12天可以完成,需付費用3480元,問:

1)甲、乙兩組工作一天,商店各應付多少錢?

2)已知甲組單獨完成需12天,乙組單獨完成需24天,單獨請哪個組,商店所需費用最少?

3)裝修完畢第二天即可正常營業(yè),且每天仍可盈利200(即裝修前后每天盈利不變),你認為商店應如何安排施工更有利?說說你的理由.(可用(1)(2)問的條件及結論)

查看答案和解析>>

同步練習冊答案