【題目】如圖,菱形ABCD的對角線AC、BD相交于點(diǎn)O,過點(diǎn)D作DE∥AC且DE= AC,連接AE交OD于點(diǎn)F,連接CE、OE.
【答案】
【解析】(1)根據(jù)菱形的性質(zhì)可得DE∥AC且,易證四邊形OCED是平行四邊形,再由平行四邊形的性質(zhì)可得;
(2)根據(jù)菱形的性質(zhì)可得AC⊥BD,進(jìn)而得到四邊形OCED是矩形,再根據(jù)菱形的性質(zhì)可得AC=AB,再由勾股定理求出AE的長.
【考點(diǎn)精析】掌握菱形的性質(zhì)和矩形的性質(zhì)是解答本題的根本,需要知道菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形被兩條對角線分成四個全等的直角三角形;菱形的面積等于兩條對角線長的積的一半;矩形的四個角都是直角,矩形的對角線相等.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD外側(cè),作等邊三角形ADE,AC,BE相交于點(diǎn)F,則∠BFC為( )
A.75°
B.60°
C.55°
D.45°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形OABC的邊長為2,OA與x軸負(fù)半軸的夾角為15°,點(diǎn)B在拋物線y=ax2(a<0)的圖象上,則a的值為( )
A.
B.
C.﹣2
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1、圖2是兩張形狀、大小完全相同的方格紙,方格紙中的每個小正方形的邊長均為1,每個小格的頂點(diǎn)叫做格點(diǎn),以格點(diǎn)為頂點(diǎn)分別按下列要求畫三角形.
(1)在圖1中畫出鈍角△ABC,使它的面積為6(畫一個即可);
(2)在圖2中畫出△DEF,使它的三邊長分別為 、2 、5(畫一個即可).并且直接寫出此時三角形DEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABDE、CDFI、EFGH的面積分別為25、9、16,△AEH、△BDC、△GFI的面積分別為S1、S2、S3,則S1+S2+S3=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是等邊三角形ABC內(nèi)的一點(diǎn),連結(jié)PA,PB,PC,以BP為邊作∠PBQ=60°,且BQ=BP,連結(jié)CQ.若PA∶PB∶PC=3∶4∶5,連結(jié)PQ,試判斷△PQC的形狀( )
A. 直角三角形 B. 等腰三角形 C. 銳角三角形 D. 鈍角三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,∠A=90°,點(diǎn)D是BC的中點(diǎn),點(diǎn)E,F分別在AB,AC上,且∠EDF=90°,連接EF,求證:BE2+CF2=EF2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的袋子中裝有僅顏色不同的5個小球,其中紅球3個,黑球2個.
(1)先從袋中取出m(m>1)個紅球,再從袋子中隨機(jī)摸出1個球,將“摸出黑球”記為事件A,填空:若A為必然事件,則m的值為 , 若A為隨機(jī)事件,則m的取值為;
(2)若從袋中隨機(jī)摸出2個球,正好紅球、黑球各1個,求這個事件的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算.
(1)|﹣3|﹣()﹣2+()0
(2)(﹣3m2n)2(﹣2m2)÷6mn2
(3)2x(x﹣y)﹣(x+2y)(x﹣y)
(4)[(x﹣2y)2﹣x(x﹣4y)﹣8xy]÷4y
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com