【題目】如圖,拋物線y=﹣x2+3x+4x軸于AB兩點(diǎn)(點(diǎn)AB左邊),交y軸于點(diǎn)C

1)求AB兩點(diǎn)的坐標(biāo);

2)求直線BC的函數(shù)關(guān)系式;

3)點(diǎn)P在拋物線的對(duì)稱(chēng)軸上,連接PB,PC,若△PBC的面積為4,求點(diǎn)P的坐標(biāo).

【答案】1A、B兩點(diǎn)坐標(biāo)為(-1,0)和(40),(2y=-x+4,(3)點(diǎn)P的坐標(biāo)為(,)或(,

【解析】

試題(1)令y=0﹣x2+3x+4=0解得方程的解即為A、B兩點(diǎn)坐標(biāo);(2)令x=0,解得拋物線y=﹣x2+3x+4y軸交點(diǎn)C的坐標(biāo),設(shè)直線BC的函數(shù)關(guān)系式y=kx+b,解得kb的值即可得出直線BC的函數(shù)關(guān)系式; (3)求得拋物線y=﹣x2+3x+4的對(duì)稱(chēng)軸,設(shè)對(duì)稱(chēng)軸與直線BC的交點(diǎn)記為D,求得D點(diǎn)坐標(biāo),設(shè)點(diǎn)P的坐標(biāo),表示出PD,再根據(jù)三角形的面積公式得出點(diǎn)P的坐標(biāo).

試題解析:

1)由﹣x2+3x+4=0解得x=﹣1x=4,

所以A、B兩點(diǎn)坐標(biāo)為(﹣1,0)和(4,0);

2)拋物線y=﹣x2+3x+4y軸交點(diǎn)C坐標(biāo)為(0,4),由(1)得,B4,0),

設(shè)直線BC的函數(shù)關(guān)系式y=kx+b,

,

解得

直線BC的函數(shù)關(guān)系式為y=﹣x+4;

3)拋物線y=﹣x2+3x+4的對(duì)稱(chēng)軸為x=

對(duì)稱(chēng)軸與直線BC的交點(diǎn)記為D,則D點(diǎn)坐標(biāo)為(,).

點(diǎn)P在拋物線的對(duì)稱(chēng)軸上,

設(shè)點(diǎn)P的坐標(biāo)為(,m),

∴PD=|m﹣|,

∴SPBC=OBPD=4

×4×|m﹣|=4,

∴m=m=

點(diǎn)P的坐標(biāo)為(,)或().

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】從共享單車(chē),共享汽車(chē)等共享出行到共享雨傘等共享物品,各式各樣的共享經(jīng)濟(jì)模式在各個(gè)領(lǐng)域迅速的普及,根據(jù)國(guó)家信息中心發(fā)布的中國(guó)分享經(jīng)濟(jì)發(fā)展報(bào)告2017顯示,參與共享經(jīng)濟(jì)活動(dòng)超6 億人,比上一年增加約1億人.

1)為獲得北京市市民參與共享經(jīng)濟(jì)活動(dòng)信息,下列調(diào)查方式中比較合理的是   ;

A.對(duì)某學(xué)校的全體同學(xué)進(jìn)行問(wèn)卷調(diào)查

B.對(duì)某小區(qū)的住戶(hù)進(jìn)行問(wèn)卷調(diào)查

C.在全市里的不同區(qū)縣,選取部分市民進(jìn)行問(wèn)卷調(diào)查

2)調(diào)查小組隨機(jī)調(diào)查了延慶區(qū)市民騎共享單車(chē)情況,某社區(qū)年齡在1236歲的人有1000人,從中隨機(jī)抽取了100人,統(tǒng)計(jì)了他們騎共享單車(chē)的人數(shù),并繪制了如下不完整的統(tǒng)計(jì)圖表.如圖所示.騎共享單車(chē)的人數(shù)統(tǒng)計(jì)表

年齡段(歲)

頻數(shù)

頻率

12x16

2

0.02

16x20

3

0.03

20x24

15

a

24x28

25

0.25

28x32

b

0.30

32x36

25

0.25

根據(jù)以上信息解答下列問(wèn)題:

①統(tǒng)計(jì)表中的a   ;b   

②補(bǔ)全頻數(shù)分布直方圖;

③試估計(jì)這個(gè)社區(qū)年齡在20歲到32歲(含20歲,不含32歲)騎共享單車(chē)的人有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下表是2018年三月份某居民小區(qū)隨機(jī)抽取20戶(hù)居民的用水情況::

月用水量/

15

20

25

30

35

40

45

戶(hù)數(shù)

2

4

m

4

3

0

1

1)求出m   ,補(bǔ)充畫(huà)出這20戶(hù)家庭三月份用電量的條形統(tǒng)計(jì)圖;

2)據(jù)上表中有關(guān)信息,計(jì)算或找出下表中的統(tǒng)計(jì)量,并將結(jié)果填入表中:

統(tǒng)計(jì)量名稱(chēng)

眾數(shù)

中位數(shù)

平均數(shù)

數(shù)據(jù)

   

   

   

3)為了倡導(dǎo)“節(jié)約用水綠色環(huán)!钡囊庾R(shí),江贛市自來(lái)水公司實(shí)行“梯級(jí)用水、分類(lèi)計(jì)費(fèi)”,價(jià)格表如下:

月用水梯級(jí)標(biāo)準(zhǔn)

Ⅰ級(jí)(30噸以?xún)?nèi))

Ⅱ級(jí)(超過(guò)30噸的部分)

單價(jià)(元/噸)

2.4

4

如果該小區(qū)有500戶(hù)家庭,根據(jù)以上數(shù)據(jù),請(qǐng)估算該小區(qū)三月份有多少戶(hù)家庭在Ⅰ級(jí)標(biāo)準(zhǔn)?

4)按上表收費(fèi),如果某用戶(hù)本月交水費(fèi)120元,請(qǐng)問(wèn)該用戶(hù)本月用水多少?lài)崳?/span>

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,ABCD為矩形,以CD為直徑作半圓,矩形的另外三邊分別與半圓相切,沿著折痕DF折疊該矩形,使得點(diǎn)C的對(duì)應(yīng)點(diǎn)E落在AB邊上,若AD2,則圖中陰影部分的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,AB=3,BC=4,動(dòng)點(diǎn)PA點(diǎn)出發(fā),按A→B→C的方向在ABBC上移動(dòng),記PA=x,點(diǎn)D到直線PA的距離為y,則y關(guān)于x的函數(shù)圖象大致是(

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解學(xué)生對(duì)博鰲論壇會(huì)的了解情況,某中學(xué)隨機(jī)抽取了部分學(xué)生進(jìn)行問(wèn)卷調(diào)查,將調(diào)查結(jié)果記作非常了解,了解,了解較少,不了解.四類(lèi)分別統(tǒng)計(jì),并繪制了下列兩幅統(tǒng)計(jì)圖(不完整).請(qǐng)根據(jù)圖中信息,解答下列問(wèn)題:

(1)此次共調(diào)查了______名學(xué)生;扇形統(tǒng)計(jì)圖中所在的扇形的圓心角度數(shù)為______;

(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)若該校共有1600名學(xué)生,請(qǐng)你估計(jì)對(duì)博鰲論壇會(huì)的了解情況為非常了解的學(xué)生約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC 中,AB=AC,C=70°,AB′C′ABC 關(guān)于直線 EF對(duì)稱(chēng),∠CAF=10°,連接 BB′,則∠ABB′的度數(shù)是(

A. 30° B. 35° C. 40° D. 45°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著新能源汽車(chē)的發(fā)展,某公交公司將用新能源公交車(chē)淘汰某一條線路上“冒黑煙”較嚴(yán)重的燃油公交車(chē),計(jì)劃購(gòu)買(mǎi)A型和B型新能源公交車(chē)共10輛,若購(gòu)買(mǎi)A型公交車(chē)1輛,B型公交車(chē)2輛,共需300萬(wàn)元;若購(gòu)買(mǎi)A型公交車(chē)2輛,B型公交車(chē)1輛,共需270萬(wàn)元,

(1)求購(gòu)買(mǎi)A型和B型公交車(chē)每輛各需多少萬(wàn)元?

(2)預(yù)計(jì)在該條線路上A型和B型公交車(chē)每輛年均載客量分別為80萬(wàn)人次和100萬(wàn)人次.若該公司購(gòu)買(mǎi)A型和B型公交車(chē)的總費(fèi)用不超過(guò)1000萬(wàn)元,且確保這10輛公交車(chē)在該線路的年均載客量總和不少于900萬(wàn)人次,則該公司有哪幾種購(gòu)車(chē)方案?哪種購(gòu)車(chē)方案總費(fèi)用最少?最少總費(fèi)用是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)yx+b的圖象經(jīng)過(guò)點(diǎn)A0,1),與反比例函數(shù)yx0)的圖象交于Bm,2).

1)求kb的值;

2)在雙曲線yx0)上是否存在點(diǎn)C,使得△ABC為等腰直角三角形?若存在,求出點(diǎn)C坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案