【題目】為了解某縣建檔立卡貧困戶對精準扶貧政策落實的滿意度,現(xiàn)從全縣建檔立卡貧困戶中隨機抽取了部分貧困戶進行了調(diào)查(把調(diào)查結(jié)果分為四個等級:A級:非常滿意:B級滿意;C級:基本滿意:D級:不滿意),并將調(diào)查結(jié)果繪制成如兩幅不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖中的信息解決下列問題:

1)本次抽樣調(diào)查測試的建檔立卡貧困戶的總戶數(shù)是   

2)圖①中,∠α的度數(shù)是   ,并把圖②條形統(tǒng)計圖補充完整;

3)某縣建檔立卡貧困戶有10000戶,如果全部參加這次滿意度調(diào)查,請估計非常滿意的戶數(shù)約為多少戶?

【答案】(1)60戶;(2)54°;(3)1500戶.

【解析】

1)由B級別戶數(shù)及其對應(yīng)百分比可得答案;
2)求出A級對應(yīng)百分比可得∠α的度數(shù),再求出C級戶數(shù)即可把圖2條形統(tǒng)計圖補充完整;
3)利用樣本估計總體思想求解可得.

解:(1)由圖表信息可知本次抽樣調(diào)查測試的建檔立卡貧困戶的總戶數(shù)=21÷35%60(戶)

故答案為:60戶;

2)圖1中,∠α的度數(shù)=×360°54° C級戶數(shù)為:60921921(戶),

補全條形統(tǒng)計圖如圖2所示:

故答案為:54°;

3)估計非常滿意的人數(shù)約為×100001500(戶).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 A2,m),B2,m-5)在平面直角坐標(biāo)系中,點O為坐標(biāo)原點.若ABO是直角三角形,則m的值不可能是( )

A.4B.2C.1D.0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的對稱軸是直線,與x軸相交于AB兩點(點B在點A右側(cè)),與y軸交于點C

1)求拋物線的解析式和AB兩點的坐標(biāo);

2)如圖1,若點P是拋物線上B,C兩點之間的一個動點(不與B,C重合),是否存在點P,使四邊形PBOC的面積最大?若存在,求點P的坐標(biāo)及四邊形PBOC面積的最大值;若不存在,請說明理由;

3)如圖2,若點M是拋物線上任意一點,過點My軸的平行線,交直線BC于點N,當(dāng)MN=3時,求點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,CEABCD的邊AB的垂直平分線,垂足為點O,CEDA的延長線交于點E、連接AC,BE,DODOAC交于點F,則下列結(jié)論:①四邊形ACBE是菱形;②∠ACD=∠BAE;③AFBE23;④S四邊形AFOESCOD23.其中正確的結(jié)論有( 。﹤.

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線yax2+bx+c的對稱軸是直線x=﹣1,且過點(1,0).頂點位于第二象限,其部分圖象如圖4所示,給出以下判斷:①ab0c0;②4a2b+c0;③8a+c0;④c3a3b;⑤直線y2x+2與拋物線yax2+bx+c兩個交點的橫坐標(biāo)分別為x1x2,則x1+x2+x1x25.其中正確的個數(shù)有(  )

A.5B.4C.3D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線和拋物線 (n為正整數(shù)).

(1)拋物線與x軸的交點坐標(biāo)為 .頂點坐標(biāo)為 .

(2)當(dāng)n=1時,請解答下列問題:

①拋物線與x軸的交點坐標(biāo)為 .頂點坐標(biāo)為 .請寫出拋物線y,的一條相同的性質(zhì).

②當(dāng)直線與拋物線y,,共有4個交點時,求m的取值范圍

(3)若直線y=k(k<0)與拋物線y,共有4個交點,從左至右依次標(biāo)記為點A,B,C,D,當(dāng)AB=BC=CD時,求出k,n之間滿足的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線,與x軸交于A、B兩點(A在點B的左側(cè)).

(1)求點A和點B的坐標(biāo);

(2)若點Pm,n)是拋物線上的一點,過點Px軸的垂線,垂足為點D

①在的條件下,當(dāng)時,n的取值范圍是,求拋物線的表達式;

②若D點坐標(biāo)(4,0),當(dāng)時,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市銷售一種商品,成本價為50/千克,規(guī)定每千克售價不低于成本價,且不高于85元.經(jīng)過市場調(diào)查,該商品每天的銷售量(千克)與售價(元/千克)滿足一次函數(shù)關(guān)系,部分數(shù)據(jù)如下表:

售價(元/千克)

50

60

70

銷售量(千克)

120

100

80

1)求之間的函數(shù)表達式.

2)設(shè)該商品每天的總利潤為(元),則當(dāng)售價定為多少元/千克時,超市每天能獲得最大利潤?最大利潤是多少元?

3)如果超市要獲得每天不低于1600元的利潤,且符合超市自己的規(guī)定,那么該商品的售價的取值范圍是多少?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】記某商品銷售單價為x元,商家銷售此種商品每月獲得的銷售利潤為y元,且y是關(guān)于x的二次函數(shù).已知當(dāng)商家將此種商品銷售單價分別定為55元或75元時,他每月均可獲得銷售利潤1800元;當(dāng)商家將此種商品銷售單價定為80元時,他每月可獲得銷售利潤1550元,則yx的函數(shù)關(guān)系式是(

A.y=﹣(x602+1825B.y=﹣2x602+1850

C.y=﹣(x652+1900D.y=﹣2x652+2000

查看答案和解析>>

同步練習(xí)冊答案