【題目】如圖,在△ABC中,∠C=90°,以BC為直徑的⊙O交AB于點D,E是AC中點.
(1)求證:DE是⊙O的切線;
(2)若AB=10,BC=6,連接CD,OE,交點為F,求OF的長.
【答案】(1)見解析;(2)OF=1.8
【解析】
(1)由題意連接CD、OD,求得即可證明DE是⊙O的切線;
(2)根據(jù)題意運用切線的性質(zhì)、角平分線性質(zhì)和勾股定理以及三角形的面積公式進行綜合分析求解.
解:(1)證明:連接CD,OD
∵∠ACB=90°,BC為⊙O直徑,
∴∠BDC=∠ADC=90°,
∵E為AC中點,
∴EC=ED=AE,
∴∠ECD=∠EDC;
又∵∠OCD=∠CDO,
∴∠EDC+∠CDO=∠ECD+ ∠OCD= ∠ACB=90°,
∴DE是⊙O的切線.
(2)解:連接CD,OE,
∵∠ACB=90°,
∴AC為⊙O的切線,
∵DE是⊙O的切線,
∴EO平分∠CED,
∴OE⊥CD,F為CD的中點,
∵點E、O分別為AC、BC的中點,
∴OE=AB==5,
在Rt△ACB中,∠ACB=90°,AB=10,BC=6,由勾股定理得:AC=8,
∵在Rt△ADC中,E為AC的中點,
∴DE=AC==4,
在Rt△EDO中,OD=BC==3,DE=4,由勾股定理得:OE=5,
由三角形的面積公式得:S△EDO=,
即4×3=5×DF,
解得:DF=2.4,
在Rt△DFO中,由勾股定理得:OF===1.8.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC在平面直角坐標系中,點A(2,﹣1),B(3,2),C(1,0).解答問題:請按要求對△ABC作如下變換.
(1)將△ABC繞點O逆時針旋轉(zhuǎn)90°得到△A1B1C1;
(2)以點O為位似中心,位似比為2:1,將△ABC在位似中心的異側(cè)進行放大得到△A2B2C2.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(問題情境)
張老師給愛好學習的小軍和小俊提出這樣的一個問題:如圖1,在△ABC中,AB=AC,點P為邊BC上任一點,過點P作PD⊥AB,PE⊥AC,垂足分別為D,E,過點C作CF⊥AB,垂足為F,求證:PD+PE=CF.
小軍的證明思路是:如圖2,連接AP,由△ABP與△ACP面積之和等于△ABC的面積可以證得:PD+PE=CF.
小俊的證明思路是:如圖2,過點P作PG⊥CF,垂足為G,可以證得:PD=GF,PE=CG,則PD+PE=CF.
[變式探究]
如圖3,當點P在BC延長線上時,其余條件不變,求證:PD﹣PE=CF;
請運用上述解答中所積累的經(jīng)驗和方法完成下列兩題:
[結(jié)論運用]
如圖4,將矩形ABCD沿EF折疊,使點D落在點B上,點C落在點C′處,點P為折痕EF上的任一點,過點P作PG⊥BE、PH⊥BC,垂足分別為G、H,若AD=8,CF=3,求PG+PH的值;
[遷移拓展]
圖5是一個航模的截面示意圖.在四邊形ABCD中,E為AB邊上的一點,ED⊥AD,EC⊥CB,垂足分別為D、C,且ADCE=DEBC,AB=2dm,AD=3dm,BD=dm.M、N分別為AE、BE的中點,連接DM、CN,求△DEM與△CEN的周長之和.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等腰△ABC的頂角∠A=36°,若將其繞點C順時針旋轉(zhuǎn)36°,得到△,點B′在AB邊上,交AC于E,連接AA′.有下列結(jié)論:①△ABC≌△;②四邊形是平行四邊形;③圖中所有的三角形都是等腰三角形;其中正確的結(jié)論是( )
A.①②B.① ③C.②③D.① ② ③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】金松科技生態(tài)農(nóng)業(yè)養(yǎng)殖有限公司種植和銷售一種綠色羊肚菌,已知該羊肚菌的成本是12元/千克,規(guī)定銷售價格不低于成本,又不高于成本的兩倍.經(jīng)過市場調(diào)查發(fā)現(xiàn),某天該羊肚菌的銷售量y(千克)與銷售價格x(元/千克)的函數(shù)關系如下圖所示:
(1)求y與x之間的函數(shù)解析式;
(2)求這一天銷售羊肚菌獲得的利潤W的最大值;
(3)若該公司按每銷售一千克提取1元用于捐資助學,且保證每天的銷售利潤不低于3600元,問該羊肚菌銷售價格該如何確定.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖,則下列敘述正確的是( )
A. abc<0 B. -3a+c<0
C. b2-4ac≥0 D. 將該函數(shù)圖象向左平移2個單位后所得到拋物線的解析式為y=ax2+c
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】現(xiàn)今“微信運動”被越來越多的人關注和喜愛,某興趣小組隨機調(diào)查了我市50名教師某日“微信運動”中的步數(shù)情況進行統(tǒng)計整理,繪制了如下的統(tǒng)計圖表(不完整):
步數(shù) | 頻數(shù) | 頻率 |
0≤x<4000 | 8 | a |
4000≤x<8000 | 15 | 0.3 |
8000≤x<12000 | 12 | b |
12000≤x<16000 | c | 0.2 |
16000≤x<20000 | 3 | 0.06 |
20000≤x<24000 | d | 0.04 |
請根據(jù)以上信息,解答下列問題:
(1)寫出a,b,c,d的值并補全頻數(shù)分布直方圖;
(2)本市約有37800名教師,用調(diào)查的樣本數(shù)據(jù)估計日行走步數(shù)超過12000步(包含12000步)的教師有多少名?
(3)若在50名被調(diào)查的教師中,選取日行走步數(shù)超過16000步(包含16000步的兩名教師與大家分享心得,求被選取的兩名教師恰好都在20000步(包含20000步)以上的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了滿足師生的閱讀需求,某校圖書館的藏書從2016年底到2018年底兩年內(nèi)由5萬冊增加到7.2萬冊.
(1)求這兩年藏書的年均增長率;
(2)經(jīng)統(tǒng)計知:中外古典名著的冊數(shù)在2016年底僅占當時藏書總量的5.6%,在這兩年新增加的圖書中,中外古典名著所占的百分率恰好等于這兩年藏書的年均增長率,那么到2018年底中外古典名著的冊數(shù)占藏書總量的百分之幾?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com