【題目】四邊形ABCD坐標(biāo)為A(0,0),B(0,3),C(3,5),D(5,0).
(1)請?jiān)谄矫嬷苯亲鴺?biāo)系中畫出四邊形ABCD;
(2)把四邊形ABCD先向上平移2個(gè)單位,再向左平移3個(gè)單位得到四邊形,求平移后各頂點(diǎn)的坐標(biāo);
(3)求四邊形ABCD的面積.
【答案】(1)見解析;(2)四邊形A1B1C1D1見解析,A1(-3,2),B1(-3,5),C1(0,7),D1(2,2);(3)17.
【解析】
(1)根據(jù)各點(diǎn)的坐標(biāo)建立直角坐標(biāo)系,然后描出各點(diǎn)并順次連接即可;
(2)根據(jù)平移的規(guī)律:先向上平移2個(gè)單位,再向左平移3個(gè)單位,找出平移后各點(diǎn)的對應(yīng)點(diǎn),然后順次連接各點(diǎn),得到平移后的四邊形A1B1C1D1,根據(jù)圖形可直接寫出平移后各頂點(diǎn)的坐標(biāo);
(3)利用分割法將四邊形ABCD分為一個(gè)直角梯形和一個(gè)直角三角形,繼而即可求出其面積.
解:(1)所畫圖形如下所示,四邊形ABCD即為所求;
(2)平移后入得到的四邊形A1B1C1D1如上圖所示,
其中各頂點(diǎn)的坐標(biāo)分別為:A1(-3,2),B1(-3,5),C1(0,7),D1(2,2);
(3)S四邊形ABCD=(3+5)×3+×2×5=17.
故答案為:(1)見解析;(2)四邊形A1B1C1D1見解析,A1(-3,2),B1(-3,5),C1(0,7),D1(2,2);(3)17.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在兩建筑物之間有一根高15米的旗桿,從A點(diǎn)經(jīng)過旗桿頂點(diǎn)恰好看到矮建筑物的墻角C點(diǎn),且俯角α為60°,又從A點(diǎn)測得D點(diǎn)的俯角β為30°.若旗桿底點(diǎn)G為BC的中點(diǎn),則矮建筑物的高CD為( )
A. 20米 B. 10米 C. 15米 D. 5米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在平面直角坐標(biāo)系xOy中,直線AB與x軸、y軸的交點(diǎn)分別為A、,將對折,使點(diǎn)O的對應(yīng)點(diǎn)H恰好落在直線AB上,折痕交x軸于點(diǎn)C,
求過A、B、C三點(diǎn)的拋物線解析式;
若拋物線的頂點(diǎn)為D,在直線BC上是否存在點(diǎn)P,使得四邊形ODAP為平行四邊形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由;
若點(diǎn)Q是拋物線上一個(gè)動點(diǎn),使得以A、B、Q為頂點(diǎn)并且以AB為直角邊的直角三角形,直接寫出Q點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的平面直角坐標(biāo)系中,一只螞蟻從A點(diǎn)出發(fā),沿著A-B-C-D-A…循環(huán)爬行,其中A點(diǎn)坐標(biāo)為(1,-1),B點(diǎn)坐標(biāo)為(-1,-1),C點(diǎn)坐標(biāo)為(-1,3),D點(diǎn)坐標(biāo)為(1,3),當(dāng)螞蟻爬了2 018個(gè)單位長度時(shí),它所處位置的坐標(biāo)為_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(2,4),點(diǎn)B的坐標(biāo)為(3,0).三角形AOB中任意一點(diǎn)P(x0,y0)經(jīng)平移后的對應(yīng)點(diǎn)為P1(x0+2,y0),并且點(diǎn)A,O,B的對應(yīng)點(diǎn)分別為點(diǎn)D,E,F(xiàn).
(1)指出平移的方向和距離;
(2)畫出平移后的三角形DEF;
(3)求線段OA在平移過程中掃過的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線與軸只有一個(gè)公共點(diǎn).
()求的值.
()怎樣平移拋物線就可以得到拋物線?請寫出具體的平移方法.
()若點(diǎn)和點(diǎn)都在拋物線上,且,直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)B、E分別在AC、DF上,AF分別交BD、CE于點(diǎn)M、N,∠A=∠F,∠1=∠2.
(1)求證:四邊形BCED是平行四邊形;
(2)已知DE=2,連接BN,若BN平分∠DBC,求CN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,梯形ABCD中,AD∥BC,AE⊥BC于點(diǎn)E,∠ADC的平分線交AE于點(diǎn)O,以點(diǎn)O為圓心,OA為半徑的圓經(jīng)過點(diǎn)B,交BC于另一點(diǎn)F.
(1)求證:CD與⊙O相切;
(2)若BF=24,OE=5,求tan∠ABC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=kx+b的圖象與x軸、y軸分別交于點(diǎn)A(12,0),與函數(shù)y=x的圖象交于點(diǎn)E,點(diǎn)E的橫坐標(biāo)為3.
(1)求函數(shù)y=kx+b的表達(dá)式;
(2)在x軸上有一點(diǎn)F(a,0),過點(diǎn)F作x軸的垂線,分別交函數(shù)y=kx+b的圖象和函數(shù)y=x的圖象于點(diǎn)C,D,若四邊形OBDC是平行四邊形,求a的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com