【題目】已知拋物線的頂點(diǎn)在第一象限,過(guò)點(diǎn)軸于點(diǎn),是線段上一點(diǎn)(不與點(diǎn)、重合),過(guò)點(diǎn)軸于點(diǎn),并交拋物線于點(diǎn)

1)求拋物線頂點(diǎn)的縱坐標(biāo)隨橫坐標(biāo)變化的函數(shù)解析式,并直接寫(xiě)出自變量的取值范圍;

2)若直線軸的正半軸于點(diǎn),且,求的面積的取值范圍.

【答案】1)函數(shù)解析式為y=x+4x0);(20≤S≤

【解析】

1)拋物線解析式為y=-x2+2mx-m2+m+4,設(shè)頂點(diǎn)的坐標(biāo)為(x,y),利用拋物線頂點(diǎn)坐標(biāo)公式得到x=m,y=m-4,然后消去m得到yx的關(guān)系式即可.

2)如圖,根據(jù)已知得出OE=4-2mE0,2m-4),設(shè)直線AE的解析式為y=kx+2m-4,代入A的坐標(biāo)根據(jù)待定系數(shù)法求得解析式,然后聯(lián)立方程求得交點(diǎn)P的坐標(biāo),根據(jù)三角形面積公式表示出S=4-2m)(m-2=-m2+3m-2=-m-2+,即可得出S的取值范圍.

1)由拋物線y=-x2+2mx-m2+m+4可知,a=-1,b=2m,c=-m2+m+4,

設(shè)頂點(diǎn)的坐標(biāo)為(x,y),

x=-=m,

b=2m,

y==m+4=x+4,

即頂點(diǎn)的縱坐標(biāo)隨橫坐標(biāo)變化的函數(shù)解析式為y=x+4x0);

2)如圖,由拋物線y=-x2+2mx-m2+m+4可知頂點(diǎn)Am,m+4),

∴△ACP∽△ABE,

,

AB=m,

BE=2m,

OB=4+m,

OE=4+m-2m=4-m

E0,4-m),

設(shè)直線AE的解析式為y=kx+4-m,

代入A的坐標(biāo)得,m+4=km+4-m,解得k=2,

∴直線AE的解析式為y=2x+4-m,

,

Pm-2,m),

S=4-m)(m-2=-m2+3m-2=-m-32+,

S有最大值,

∴△OEP的面積S的取值范圍:0≤S≤

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】池州十中組織七、八、九年級(jí)學(xué)生參加中國(guó)夢(mèng)作文比賽,該校將收到的參賽作文進(jìn)行分年級(jí)統(tǒng)計(jì),繪制了以下兩幅不完整的統(tǒng)計(jì)圖,根據(jù)圖中提供的信息完成以下問(wèn)題:

1)全校參賽作文篇數(shù)為   篇,補(bǔ)全條形統(tǒng)計(jì)圖;

2)扇形統(tǒng)計(jì)圖中九年級(jí)參賽作文篇數(shù)對(duì)應(yīng)的圓心角是   

3)經(jīng)過(guò)評(píng)審,全校共有4篇作文榮獲一等獎(jiǎng),其中一篇來(lái)自七年級(jí),兩篇來(lái)自八年級(jí),一篇來(lái)自九年級(jí),學(xué)校準(zhǔn)備從一等獎(jiǎng)作文中任選兩篇刊登在?,請(qǐng)用樹(shù)狀圖方法求出九年級(jí)一等獎(jiǎng)作文登上校刊的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】截長(zhǎng)補(bǔ)短法,是初中幾何題中一種添加輔助線的方法,也是把幾何題化難為易的一種策略.截長(zhǎng)就是在長(zhǎng)邊上截取一條線段與某一短邊相等,補(bǔ)短就是通過(guò)延長(zhǎng)或旋轉(zhuǎn)等方式使兩條短邊拼合到一起,從而解決問(wèn)題.

1)如圖1,ABC是等邊三角形,點(diǎn)D是邊BC下方一點(diǎn),BDC=120°,探索線段DA、DB、DC之間的數(shù)量關(guān)系.

解題思路:將△ABD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°得到△ACE,可得AE=AD, CE=BD,∠ABD=ACE,DAE=60°,根據(jù)∠BAC+BDC=180°,可知∠ABD+ACD=180°, ACE+ACD=180°,易知△ADE是等邊三角形,所以AD=DE,從而解決問(wèn)題.

根據(jù)上述解題思路,三條線段DADB、DC之間的等量關(guān)系是___________;

2)如圖2,RtABC,BAC=90°,AB=AC.點(diǎn)D是邊BC下方一點(diǎn),BDC=90°,探索三條線段DA、DB、DC之間的等量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=x22x1

1)求此函數(shù)圖象的頂點(diǎn)A以及它與y軸交點(diǎn)B的坐標(biāo).

2)求此函數(shù)圖象與x軸的交點(diǎn)CD的坐標(biāo);

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AB經(jīng)過(guò)圓心O ,交⊙O于點(diǎn)C

1)尺規(guī)作圖:在AB上方的圓弧上找一點(diǎn)D,使得ABD是以AB為底邊的等腰三角形(保留作圖痕跡);

2)在(1)的條件下,若∠DAB=30°,求證:直線BD與⊙O相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)學(xué)問(wèn)題:如何計(jì)算平面直角坐標(biāo)系中任意兩點(diǎn)之間的距離?

探究問(wèn)題:

為解決上面的問(wèn)題,我們從最簡(jiǎn)單的問(wèn)題進(jìn)行研究.

探究一:在圖1中,已知線段ABA(﹣2,0),B0,3),寫(xiě)出線段AO的長(zhǎng),BO的長(zhǎng),所以線段AB的長(zhǎng)為多少;把RtAOB向右平移3個(gè)單位,再向上平移2個(gè)單位,得到RtCDE,寫(xiě)出RtCDE的頂點(diǎn)坐標(biāo)C,DE,此時(shí)線段CD的長(zhǎng)為多少,DE的長(zhǎng)為多少,所以線段CE的長(zhǎng)為多少.

探究二:在圖2中,已知線段AB的端點(diǎn)坐標(biāo)為Aa,b),Bc,d),求出圖中AB的長(zhǎng)(用含ab,cd的代數(shù)式表示,不必證明).

歸納總結(jié):無(wú)論線段AB處于直角坐標(biāo)系中的哪個(gè)位置,當(dāng)其端點(diǎn)坐標(biāo)為Ax1y1),Bx2,y2)時(shí)線段AB的長(zhǎng)為多少(用含x1,y1x2,y2的代數(shù)式表示,不必證明).

拓展與應(yīng)用:

運(yùn)用在圖3中,一次函數(shù)y=﹣x+3與反比例函數(shù)y=的圖象交點(diǎn)為AB,交點(diǎn)的坐標(biāo)分別是A12),B2,1).

①求線段AB的長(zhǎng);

②若點(diǎn)Px軸上動(dòng)點(diǎn),求PA+PB的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,ABAC5,BC6,點(diǎn)D,E分別在ABBC上,將△ABC沿直線DE折疊,點(diǎn)B落在AC的中點(diǎn)B處,則BE的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)試銷一種成本為每件60元的服裝,規(guī)定試銷期間銷售單價(jià)不低于成本單價(jià),且獲利不得高于45%,經(jīng)試銷發(fā)現(xiàn),銷售量(件)與銷售單價(jià)(元)符合一次函數(shù),且時(shí),;時(shí),

1)求一次函數(shù)的表達(dá)式;

2)若該商場(chǎng)獲得利潤(rùn)為元,試寫(xiě)出利潤(rùn)與銷售單價(jià)之間的關(guān)系式;銷售單價(jià)定為多少元時(shí),商場(chǎng)可獲得最大利潤(rùn),最大利潤(rùn)是多少元?

3)若該商場(chǎng)獲得利潤(rùn)不低于500元,試確定銷售單價(jià)的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店經(jīng)銷一種產(chǎn)品,其標(biāo)價(jià)比進(jìn)價(jià)每件多元,且商店用元購(gòu)進(jìn)這種商品的數(shù)量和這種商品元的銷售額所售出的件數(shù)相同.

求這種商品的進(jìn)價(jià)及標(biāo)價(jià);

經(jīng)過(guò)--段時(shí)間的銷售,商店發(fā)現(xiàn),以標(biāo)價(jià)出售這種商品,每天可售出件,每漲價(jià)元,則少賣出件,要使這種商品每天的銷售額最大,求該商品每件應(yīng)漲價(jià)多少元.

查看答案和解析>>

同步練習(xí)冊(cè)答案