【題目】如圖,ABC中,ABAC,點PABC內(nèi)一點,∠APB=∠BAC120°.若APBP4,則PC的最小值為(

A. 2B. C. D. 3

【答案】B

【解析】

把△APB繞點A逆時針旋轉(zhuǎn)120°得到△AP'C,作ADPP'D,根據(jù)旋轉(zhuǎn)變換的性質(zhì)和等腰三角形的性質(zhì)得到∠AP'P=30°,根據(jù)直角三角形的性質(zhì)得到PP'AP,根據(jù)勾股定理和配方法計算.

把△APB繞點A逆時針旋轉(zhuǎn)120°得到△AP'C,作ADPP'D,則AP=AP',∠PAP'=120°,∠AP'C=APB=120°,∴∠AP'P=30°,∴PP'AP,∠PP'C=90°.

AP+BP=4,∴BP=4PA.在RtPP'C中,PC,則PC的最小值為2

故選B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知點,且、滿足,的邊軸交于點,且中點,雙曲線經(jīng)過兩點.

1)求的值;

2)點在雙曲線上,點軸上,若以點、、為頂點的四邊形是平行四邊形,試求滿足要求的所有點的坐標;

3)以線段為對角線作正方形(如圖,點是邊上一動點,的中點,,交,當上運動時,的值是否發(fā)生改變?若改變,求出其變化范圍;若不改變,請求出其值,并給出你的證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有一個六面分別標有數(shù)字1,23,4,56,且質(zhì)地均勻的正方體篩子,另有三張正面分別標有1,2,3,的卡片(卡片除數(shù)字外,其他都相同),先由小明擲篩子一次,記下篩子向上一面出現(xiàn)的數(shù)字,然后由小王從三張背面朝上放置在桌面上的卡片中隨機抽取一張,記下卡片上的數(shù)字。

1)請用列表或樹狀圖的方法,求出篩子向上一面出現(xiàn)的數(shù)字與卡片上的數(shù)字之積為6的概率;

2)小明和小王做游戲,約定游戲規(guī)則如下:若篩子向上一面出現(xiàn)的數(shù)字與卡片上的數(shù)字之積大于7,則小明贏;若篩子向上一面出現(xiàn)的數(shù)字與卡片上的數(shù)字之積小于7,則小王贏;問小明和小王誰贏的可能性更大?請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線y=﹣x2+x+x軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于點C,點D是拋物線的頂點.

1)如圖1P為直線BC上方拋物線上一動點,過點PPQy軸交BC于點Q.在拋物線的對稱軸上有一動點M,在x軸上有一動點N,當6PQCQ的值最大時,求PM+MN+NB的最小值;

2)如圖2,將△ABC繞點B逆時針旋轉(zhuǎn)90°后得到△ABC',再將△ABC向右平移1個單位得到△ABC,那么在拋物線的對稱軸DM上,是否存在點T,使得△ABT為等腰三角形?若存在,求出點Tx軸的距離;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直坐標系中,有A(﹣2,3),B(﹣2,﹣1)兩點,若點A關(guān)于y軸的對稱點為點C,點B向右平移8個單位到點D

1)分別寫出點C,點D的坐標;

2)若一次函數(shù)圖象經(jīng)過CD兩點,求一次函數(shù)表達式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形ABCD中,AB=BC,B=∠C=90°PBC邊上一點,APPD,EAB邊上一點,BPE=∠BAP

1 如圖1,若AE=PE,直接寫出=______;

2 如圖2,求證:AP=PDPE;

3 如圖3,當AE=BP時,連BD,則=______,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,上一點,于點,的中點,于點,與交于點,若,平分,連接,.

(1)求證:;

(2)小亮同學(xué)經(jīng)過探究發(fā)現(xiàn):.請你幫助小亮同學(xué)證明這一結(jié)論.

(3)若,判定四邊形是否為菱形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,AC=4BC=3,點E、F分別在AC,AB上,連接EF.

1)將△ABC沿EF折疊,使點A落在AB邊上的點D處,如圖1,若S四邊形ECBD=2SEDF,求AE的長;

2)將△ABC沿EF折疊,使點A落在BC邊上的點M處,如圖2,若MFCB.

①求AE的長;②求四邊形AEMF的面積;

3)若點E在射線AC上,點F在邊AB上,點A關(guān)于EF所在直線的對稱點為點P,問:是否存在以PF、CB為對邊的平行四邊形,若存在,求出AE的長;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,點PAB邊上一點不與A,B重合,,過點作,交AD邊于點Q,連結(jié)CQ

,求證:四邊形ABCD是矩形;

的條件下,當,時,求AQ的長.

查看答案和解析>>

同步練習(xí)冊答案