【題目】如圖,將正n邊形繞點A順時針旋轉60°后,發(fā)現(xiàn)旋轉前后兩圖形有另一交點O,連接AO,我們稱AO為“疊弦”;再將“疊弦”AO所在的直線繞點A逆時針旋轉60°后,交旋轉前的圖形于點P,連接PO,我們稱∠OAB為“疊弦角”,△AOP為“疊弦三角形”

【探究證明】

(1)請在圖1和圖2中選擇其中一個證明:“疊弦三角形”(△AOP)是等邊三角形;

(2)如圖2,求證:∠OAB=∠OAE′

【歸納猜想】

(3)圖1、圖2中的“疊弦角”的度數(shù)分別為 ;

(4)圖n中,“疊弦三角形” 等邊三角形(填“是”或“不是”)

(5)圖n中,“疊弦角”的度數(shù)為 (用含n的式子表示)

【答案】(1)證明見解析;(2)證明見解析;(3)15°,24°;(4)是;(5)

【解析】

試題分析:(1)先由旋轉的性質,再判斷出△APD≌△AOD',最后用旋轉角計算即可;

(2)先判斷出Rt△AEM≌Rt△ABN,在判斷出Rt△APM≌Rt△AON 即可;

(3)先判斷出△AD′O≌△ABO,再利用正方形,正五邊形的性質和旋轉的性質,計算即可;

(4)先判斷出△APF≌△AE′F′,再用旋轉角為60°,從而得出△PAO是等邊三角形;

(5)用(3)的方法求出正n邊形的,“疊弦角”的度數(shù).

試題解析:(1)如圖1,∵四ABCD是正方形,由旋轉知:AD=AD',∠D=∠D'=90°,∠DAD'=∠OAP=60°,∴∠DAP=∠D'AO,∴△APD≌△AOD'∴AP=AO,∵∠OAP=60°,∴△AOP是等邊三角形;

(2)如圖2,作AM⊥DE于M,作AN⊥CB于N.∵五ABCDE是正五邊形,由旋轉知:AE=AE',∠E=∠E'=108°,∠EAE'=∠OAP=60°∴∠EAP=∠E'AO,∴△APE≌△AOE'(ASA),∴∠OAE'=∠PAE.

在Rt△AEM和Rt△ABN中,∠AEM=∠ABN=72°,AE=AB,∴Rt△AEM≌Rt△ABN (AAS),∴∠EAM=∠BAN,AM=AN.在Rt△APM和Rt△AON中,AP=AO,AM=AN,∴Rt△APM≌Rt△AON (HL),∠PAM=∠OAN,∴∠PAE=∠OAB,∴∠OAE'=∠OAB (等量代換).

(3)由(1)有,△APD≌△AOD',∴∠DAP=∠D′AO,在△AD′O和△ABO中,AD=AB,AO=AO,∴△AD′O≌△ABO,∴∠D′AO=∠BAO,由旋轉得,∠DAD′=60°,∵∠DAB=90°,∴∠D′AB=∠DAB﹣∠DAD′=30°,∴∠D′AD=∠D′AB=15°,同理可得,∠E′AO=24°,故答案為:15°,24°.

(4)如圖3,∵六邊形ABCDEF和六邊形A′B′C′E′F′是正六邊形,∴∠F=F′=120°,由旋轉得,AF=AF′,EF=E′F′,∴△APF≌△AE′F′,∴∠PAF=∠E′AF′,由旋轉得,∠FAF′=60°,AP=AO

∴∠PAO=∠FAO=60°,∴△PAO是等邊三角形.

故答案為:是.

(5)同(3)的方法得,∠OAB=[(n﹣2)×180°÷n﹣60°]÷2=

故答案:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】實驗中學現(xiàn)有學生2 870,學校為了進一步豐富學生課余生活擬調查各興趣小組活動情況,為此校學生會委托小容、小易進行一次隨機抽樣調查.根據(jù)采集到的數(shù)據(jù),小容繪制的統(tǒng)計圖1,小易繪制的統(tǒng)計圖2(不完整)如下:

請你根據(jù)統(tǒng)計圖12中提供的信息,解答下列問題:

(1)寫出2條有價值信息(不包括下面要計算的信息);

(2)這次抽樣調查的樣本容量是多少?在圖2,請將小易畫的統(tǒng)計圖中的體育部分的圖形補充完整;

(3)愛好書畫的人數(shù)占被調查人數(shù)的百分數(shù)是多少?估計實驗中學現(xiàn)有的學生中,有多少人愛好書畫?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】三角形的兩邊長分別為36,第三邊的長是方程x26x80的一個根,則這個三角形的周長是( )

A. 9 B. 11 C. 13 D. 1113

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題提出:用n根相同的木棒搭一個三角形(木棒無剩余),能搭成多少種不同的等腰三角形?

問題探究:不妨假設能搭成種不同的等腰三角形,為探究之間的關系,我們可以從特殊入手,通過試驗、觀察、類比,最后歸納、猜測得出結論.

探究一:

1)用3根相同的木棒搭成一個三角形,能搭成多少種不同的三角形?

此時,顯然能搭成一種等腰三角形。所以,當時,

2)用4根相同的木棒搭成一個三角形,能搭成多少種不同的三角形?

只可分成1根木棒、1根木棒和2根木棒這一種情況,不能搭成三角形

所以,當時,

3)用5根相同的木棒搭成一個三角形,能搭成多少種不同的三角形?

若分成1根木棒、1根木棒和3根木棒,則不能搭成三角形

若分為2根木棒、2根木棒和1根木棒,則能搭成一種等腰三角形

所以,當時,

4)用6根相同的木棒搭成一個三角形,能搭成多少種不同的三角形?

若分成1根木棒、1根木棒和4根木棒,則不能搭成三角形

若分為2根木棒、2根木棒和2根木棒,則能搭成一種等腰三角形

所以,當時,

綜上所述,可得表


3

4]

5

6


1

0

1

1

探究二:

1)用7根相同的木棒搭成一個三角形,能搭成多少種不同的等腰三角形?

(仿照上述探究方法,寫出解答過程,并把結果填在表中)

2)分別用8根、9根、10根相同的木棒搭成一個三角形,能搭成多少種不同的等腰三

角形?(只需把結果填在表中)


7

8

9

10






你不妨分別用11根、12根、13根、14根相同的木棒繼續(xù)進行探究,……

解決問題:用根相同的木棒搭一個三角形(木棒無剩余),能搭成多少種不同的等腰三角形?

(設分別等于、、,其中是整數(shù),把結果填在表中)











問題應用:用2016根相同的木棒搭一個三角形(木棒無剩余),能搭成多少種不同的等腰三角形?(要求寫出解答過程)其中面積最大的等腰三角形每個腰用了__________________根木棒。(只填結果)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線y=2x2+1的頂點坐標是( 。
A.(2,1)
B.(0,1)
C.(1,0)
D.(1,2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若線段c是線段a、b的比例中項,且a4厘米,b25厘米,則c_____厘米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】圖1、圖2是兩張形狀、大小完全相同的方格紙,方格紙中的每個小正方形的邊長均為1,點A和點B在小正方形的頂點上.

(1)在圖1中畫出ABC(點C在小正方形的頂點上),使ABC為直角三角形(畫一個即可);

(2)在圖2中畫出ABD(點D在小正方形的頂點上),使ABD為等腰三角形(畫一個即可).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,AC的垂直平分線分別交AB、AC于點D、E.

(1)若∠A = 40°,求∠DCB的度數(shù).

(2)若AE=4,△DCB的周長為13,求△ABC的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了了解參加某運動會的2 000名運動員的年齡情況,從中抽查了100名運動員的年齡,就這個問題來說,下面說法正確的是( )
A.2 000名運動員是總體
B.每個運動員是個體
C.100名運動員是抽取的一個樣本
D.100名運動員的年齡是抽取的一個樣本

查看答案和解析>>

同步練習冊答案