【題目】直線∥,一圓交直線a,b分別于A、B、C、D四點(diǎn),點(diǎn)P是圓上的一個動點(diǎn),連接PA、PC.
(1)如圖1,直接寫出∠PAB、∠PCD、∠P之間的數(shù)量關(guān)系為 ;
(2)如圖2,直接寫出∠PAB、∠PCD、∠P之間的數(shù)量關(guān)系為
(3)如圖3,求證:∠P=∠PAB+∠PCD;
(4)如圖4,直接寫出∠PAB、∠PCD、∠P之間的數(shù)量關(guān)系為 .
【答案】(1)∠PCD=∠P+∠PAB;(2)∠PAB=∠P+∠PCD;(3)見解析;(4)∠PAB+∠P+∠PCD=360°.
【解析】
(1)方法一:設(shè)AB、PC相交于點(diǎn)E,由外角性質(zhì)得:∠PEB=∠P+∠PAB,又因?yàn)?/span>a∥b,所以∠PEB=∠PCD,從而求解;方法二:過點(diǎn)P作PE∥AB;
(2)方法一:設(shè)AP、CD相交于點(diǎn)E,理由同(1)得∠PED=∠P+∠PCD,又因?yàn)?/span>a∥b,所以∠PED=∠PAB,從而求解;方法二:過點(diǎn)P作PE∥AB;
(3) 過點(diǎn)P作PE∥a,因?yàn)?/span>a∥b,所以PE∥b,所以∠PAB=∠APE,∠∠PCD =∠EPC,
又因?yàn)椤?/span>APC=∠APE+∠CPE,所以∠APC=∠PAB+∠PCD;
(4) ∠PAB+∠P+∠PCD=360°. 過點(diǎn)P作PE∥a,因?yàn)?/span>a∥b,所以PE∥b,所以∠PAB+∠APE=180°,∠PCD+∠CPE=180°,即∠PAB+∠APE+∠PCD+∠CPE=360°,從而求解;
解 :(1)∠PCD=∠P+∠PAB;
理由:設(shè)AB、PC相交于點(diǎn)E,由外角性質(zhì)得:∠PEB=∠P+∠PAB,
∵a∥b,∴∠PEB=∠PCD,
∴∠PCD=∠P+∠PAB;
(2)∠PAB=∠P+∠PCD;
理由:設(shè)AP、CD相交于點(diǎn)E,理由同(1)得∠PED=∠P+∠PCD,
又∵a∥b,∴∠PED=∠PAB,
∴ ∠PAB=∠P+∠PCD ;
(3)過點(diǎn)P作PE∥a,∵a∥b,∴PE∥b,
∴∠PAB=∠APE,∠∠PCD =∠EPC,
∵∠APC=∠APE+∠CPE
∴∠APC=∠PAB+∠PCD;;
(4) ∠PAB+∠P+∠PCD=360°
理由:過點(diǎn)P作PE∥a,∵a∥b,∴PE∥b,
∴∠PAB+∠APE=180°,∠PCD+∠CPE=180°
∴∠PAB+∠APE+∠PCD+∠CPE=360°
即∠PAB+∠APC+∠PCD=360°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2018年俄羅斯世界杯組委會對世界杯比賽用球進(jìn)行抽查,隨機(jī)抽取了100個足球,檢測每個足球的質(zhì)量是否符合標(biāo)準(zhǔn),超過或不足部分分別用正、負(fù)數(shù)來表示,記錄如表:
與標(biāo)準(zhǔn)質(zhì)量的差值(單位:克) | ﹣4 | ﹣2 | 0 | 1 | 3 | 6 |
個數(shù) | 10 | 13 | 30 | 25 | 15 | 7 |
(1)平均每個足球的質(zhì)量比標(biāo)準(zhǔn)質(zhì)量多還是少?用你學(xué)過的方法合理解釋;
(2)若每個足球標(biāo)準(zhǔn)質(zhì)量為420克,則抽樣檢測的足球的總質(zhì)量是多少克?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線L1:y=bx+c與拋物線L2:y=ax2的兩個交點(diǎn)坐標(biāo)分別為A(m,4),B(1,1).
(1)求m的值;
(2)過動點(diǎn)P(n,0)且垂直于x軸的直線與L1,L2的交點(diǎn)分別為C,D,當(dāng)點(diǎn)C位于點(diǎn)D上方時(shí),請直接寫出n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,△ABC的三個頂點(diǎn)的位置如圖所示,點(diǎn)A′的坐標(biāo)是(﹣2,2),現(xiàn)將△ABC平移.使點(diǎn)A變換為點(diǎn)A′,點(diǎn)B′、C′分別是B、C的對應(yīng)點(diǎn).
(1)請畫出平移后的△A′B′C′(不寫畫法),并直接寫出點(diǎn)B′的坐標(biāo):B′(_____________);
(2)若△ABC內(nèi)部一點(diǎn)P的坐標(biāo)為(a,b),則點(diǎn)P的對應(yīng)點(diǎn)P′的坐標(biāo)是(________________);
(3)求出△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠ACB = 90°.半徑為1的⊙A與邊AB相交于點(diǎn)D,與邊AC相交于點(diǎn)E,連接DE并延長,與邊BC的延長線交于點(diǎn)P.
(1)當(dāng)∠B = 30°時(shí),求證:△ABC∽△EPC;
(2)當(dāng)∠B = 30°時(shí),連接AP,若△AEP與△BDP相似,求CE的長;
(3)若CE = 2,BD = BC,求∠BPD的正切值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,過點(diǎn)A作AE⊥BC,垂足為E,連接DE,F為線段DE上一點(diǎn),且∠AFE=∠B.
(1)求證:△ADF∽△DEC;
(2)若AB=4,AD=,AE=3,求AF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),在平面直角坐標(biāo)系中,等腰直角三角形AOB的斜邊OB在x軸上,直線y=2x-2經(jīng)過等腰直角三角形AOB的直角頂點(diǎn)A,交y軸于點(diǎn)C.
(1)點(diǎn)C坐標(biāo)是( , );點(diǎn)A坐標(biāo)是( , );
(2)若D是坐標(biāo)平面內(nèi)任意一點(diǎn),使點(diǎn)A、C、O、D剛好能構(gòu)成平行四邊形,請直接寫出符合條件的點(diǎn)D的坐標(biāo);
(3)若點(diǎn)P是x軸上一動點(diǎn).點(diǎn)Q的坐標(biāo)是(a,),△PAQ是以點(diǎn)A為直角頂點(diǎn)的等腰三角形.求出a的值并寫出點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知矩形ABCD,AB=10,BC=13,點(diǎn)P為邊AD上一動點(diǎn),點(diǎn)A’與點(diǎn)A關(guān)于BP對稱,連結(jié)A’C,當(dāng)△A’BC為等腰三角形時(shí),AP的長度為()
A.2B.C.2或D.2或
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】黨的十六大提出全面建設(shè)小康社會,加快推進(jìn)社會主義現(xiàn)代化,力爭國民生產(chǎn)總值到2020年比2000年翻兩番(“翻一番”表示為原來的2倍)在本世紀(jì)的頭二十年(2001年~2020年),要實(shí)現(xiàn)這一目標(biāo),以十年為單位計(jì)算,設(shè)每個十年的國民生產(chǎn)總值的增長率都是,那么滿足的方程為( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com