【題目】如圖,已知一次函數(shù)y1=-x+b的圖象交x軸于點(diǎn)A(3,0),與一次函數(shù)y2=x+1的圖象交于點(diǎn)B,
(1)求一次函數(shù)y1=-x+b的表達(dá)式;
(2)當(dāng)x取哪些值時(shí),0<y1<y2?
【答案】(1)y1=-x+3;(2)
【解析】
(1)由一次函數(shù)y1=-x+b的圖象交x軸于點(diǎn)A(3,0),用待定系數(shù)法列式求解即可得到答案;
(1)先求出兩個(gè)一次函數(shù)函數(shù)的交點(diǎn)坐標(biāo),觀察圖像可以直接得到答案;
解:(1)∵一次函數(shù)y1=-x+b的圖象交x軸于點(diǎn)A(3,0),
將點(diǎn)A(3,0)代入y1=-x+b,
得0=-3+b,解得b=3,
所以一次函數(shù)y1=-x+b的表達(dá)式為y1=-x+3;
(2)當(dāng)-x+3=x+1時(shí),
解得:,即點(diǎn)B的橫坐標(biāo)為,
觀察圖象可知,
當(dāng)時(shí),0<y1<y2;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,點(diǎn)D為邊CB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)D不與點(diǎn)B重合),過D作DO⊥AB,垂足為O,點(diǎn)B′在邊AB上,且與點(diǎn)B關(guān)于直線DO對(duì)稱,連接DB′,AD.
(1)求證:△DOB∽△ACB;
(2)若AD平分∠CAB,求線段BD的長(zhǎng);
(3)當(dāng)△AB′D為等腰三角形時(shí),求線段BD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)若直線上有個(gè)點(diǎn),一共有________條線段;
若直線上有個(gè)點(diǎn),一共有________條線段;
若直線上有個(gè)點(diǎn),一共有________條線段;
若直線上有個(gè)點(diǎn),一共有________條線段;
(2)有公共頂點(diǎn)的條射線可以組成_____個(gè)小于平角的角;
有公共頂點(diǎn)的條射線最多可以組成_____個(gè)小于平角的角;
有公共頂點(diǎn)的條射線最多可以組成_____個(gè)小于平角的角;
有公共頂點(diǎn)的條射線最多可以組成_____個(gè)小于平角的角;
(3)你學(xué)過的知識(shí)里還有滿足類似規(guī)律的嗎?試看寫一個(gè).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,射線OC在∠AOB的內(nèi)部,圖中共有3個(gè)角:∠AOB,∠AOC和∠BOC,若其中有一個(gè)角的度數(shù)是另一個(gè)角度數(shù)的兩倍,則稱射線OC是∠AOB的“巧分線”.如圖②,若,且射線PQ繞點(diǎn)P從PN位置開始,以每秒15°的速度逆時(shí)針旋轉(zhuǎn),射線PM同時(shí)繞點(diǎn)P以每秒5°的速度逆時(shí)針旋轉(zhuǎn),當(dāng)PQ與PN成180°時(shí),PQ與PM同時(shí)停止旋轉(zhuǎn),設(shè)旋轉(zhuǎn)的時(shí)間為t秒.當(dāng)射線PQ是∠MPN的“巧分線”時(shí),t的值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,O是邊AC上一點(diǎn),以O(shè)為圓心,OA為半徑的圓分別交AB,AC于點(diǎn)E,D,在BC的延長(zhǎng)線上取點(diǎn)F,使得BF=EF,EF與AC交于點(diǎn)G.
(1)試判斷直線EF與⊙O的位置關(guān)系,并說明理由;
(2)若OA=2,∠A=30°,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,D是邊AB上一點(diǎn),且∠A=2∠DCB.E是BC邊上的一點(diǎn),以EC為直徑的⊙O經(jīng)過點(diǎn)D.
(1)求證:AB是⊙O的切線;
(2)若CD的弦心距為1,BE=EO,求BD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)代互聯(lián)網(wǎng)技術(shù)的廣泛應(yīng)用,催生了快遞行業(yè)的高速發(fā)展.小明計(jì)劃給朋友快遞一部分物品,經(jīng)了解有甲、乙兩家快遞公司比較合適.甲公司表示:快遞物品不超過1千克的,按每千克22元收費(fèi);超過1千克,超過的部分按每千克15元收費(fèi).乙公司表示:按每千克16元收費(fèi),另加包裝費(fèi)3元.設(shè)小明快遞物品x千克.
(1)請(qǐng)分別寫出甲、乙兩家快遞公司快遞該物品的費(fèi)用y(元)與x(千克)之間的函數(shù)關(guān)系式;
(2)小明選擇哪家快遞公司更省錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AD是等腰△ABC底邊BC上的高.點(diǎn)O是AC中點(diǎn),延長(zhǎng)DO到E,使OE=OD,連接AE,CE.
(1)求證:四邊形ADCE的是矩形;
(2)若AB=17,BC=16,求四邊形ADCE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某服裝店進(jìn)行打折銷售,明明買了兩件衣服,第一件打八折,第二件打六折,共計(jì)220元,付款后,收銀員發(fā)現(xiàn)結(jié)算時(shí)不小心把兩件衣服的標(biāo)價(jià)計(jì)算反了,又找給明明20元,則這兩件衣服原標(biāo)價(jià)各是____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com