【題目】已知二次函數(shù)y1=m(x﹣1)(x+3)(m≠0)的圖象經(jīng)過點.
(1)求二次函數(shù)的解析式;
(2)當x取a,b(a≠b)時函數(shù)值相等,求x取a+b時的函數(shù)值;
(3)若反比例函數(shù)y2=(k>0,x>0)的圖象與(1)中的二次函數(shù)的圖象在第一象限內(nèi)的交點為A,點A的橫坐標x滿足2<x0<3,試求實數(shù)k的取值范圍.
【答案】(1) ; (2) x取a+b時的函數(shù)值為; (3) k的取值范圍為5<k<18.
【解析】
(1)直接利用待定系數(shù)法求函數(shù)的解析式即可.
(2)首先根據(jù)解析式求得對稱軸x=﹣1,因為當x取a,b(a≠b)時函數(shù)值相等,則=﹣1,即可求出a+b的值;再將x=a+b代入即可求得函數(shù)值;
(3)點A的橫坐標x0滿足2<x0<3,可通過x=2,x=3兩個點上拋物線與反比例函數(shù)的大小關系即可求出k的取值范圍.
(1)將點(0,-)代入y=a(x﹣1)(x+3),解得a=.
∴拋物線解析式為.
(2)由拋物線y1=m(x﹣1)(x+3)(m≠0)可知拋物線與x軸的交點為(1,0),(﹣3,0),
∴對稱軸為直線x==﹣1,
∵當x取a,b(a≠b)時函數(shù)值相等,
∴=﹣1,
∴a+b=﹣2.
∴y1=(﹣2﹣1)(﹣2+3)=﹣,
x取a+b時的函數(shù)值為﹣.
(3)當2<x<3時,函數(shù)y1=x2+x﹣,y1隨著x增大而增大,對y2=(k>0),y2隨著x的增大而減小.
∵A(x0,y0)為二次函數(shù)圖象與反比例函數(shù)圖象的交點,
∴當x0=2時,由反比例函數(shù)圖象在二次函數(shù)上方得y2>y1,
即,解得k>5.
當x0=3時,二次函數(shù)數(shù)圖象在反比例上方得y1>y2,
即,解得k<18.
所以k的取值范圍為5<k<18.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知△ABC的三個頂點坐標分別是A(1,1),B(4,1),C(3,3).
(1)將△ABC向下平移5個單位后得到△A1B1C1,請畫出△A1B1C1;
(2)將△ABC繞原點O逆時針旋轉(zhuǎn)90°后得到△A2B2C2,請畫出△A2B2C2;
(3)判斷以O,A1,B為頂點的三角形的形狀.(無須說明理由)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線上有兩點M(m+1,a)、N(m,b).
(1)當a=-1,m=1時,求拋物線的解析式;
(2)用含a、m的代數(shù)式表示b和c;
(3)當a<0時,拋物線滿足,,,
求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,、、、為矩形的四個頂點,,,動點、分別從點、同時出發(fā),點以的速度向點移動,一直到達為止,點以的速度向移動.
、兩點從出發(fā)開始到幾秒?四邊形的面積為;
、兩點從出發(fā)開始到幾秒時?點和點的距離是.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,對稱軸為直線x=1的拋物線經(jīng)過A(﹣1,0)、C(0,3)兩點,與x軸的另一個交點為B,點D在y軸上,且OB=3OD
(1)求該拋物線的表達式;
(2)設該拋物線上的一個動點P的橫坐標為t
①當0<t<3時,求四邊形CDBP的面積S與t的函數(shù)關系式,并求出S的最大值;
②點Q在直線BC上,若以CD為邊,點C、D、Q、P為頂點的四邊形是平行四邊形,請求出所有符合條件的點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校在一次大課間活動中,采用了四鐘活動形式:A、跑步,B、跳繩,C、做操,D、游戲.全校學生都選擇了一種形式參與活動,小杰對同學們選用的活動形式進行了隨機抽樣調(diào)查,根據(jù)調(diào)查統(tǒng)計結(jié)果,繪制了不完整的統(tǒng)計圖.
請結(jié)合統(tǒng)計圖,回答下列問題:
(1)本次調(diào)查學生共 人, = ,并將條形圖補充完整;
(2)如果該校有學生2000人,請你估計該校選擇“跑步”這種活動的學生約有多少人?
(3)學校讓每班在A、B、C、D四鐘活動形式中,隨機抽取兩種開展活動,請用樹狀圖或列表的方法,求每班抽取的兩種形式恰好是“跑步”和“跳繩”的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等腰Rt△ABC,∠BAC=90°,BC=,E為AB上一點,以CE為斜邊作等腰Rt△CDE,連接AD,若∠ACE=30°,則AD的長為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“賞中華詩詞,尋文化基因,品生活之美”,某校舉辦了首屆“中國詩詞大會”,經(jīng)選拔后有50名學生參加決賽,這50名學生同時默寫50首古詩詞,若每正確默寫出一首古詩詞得2分,根據(jù)測試成績繪制出部分頻數(shù)分布表和部分頻數(shù)分布直方圖如圖表:
組別 | 成績x分 | 頻數(shù)人數(shù) |
第1組 | 6 | |
第2組 | 8 | |
第3組 | 14 | |
第4組 | a | |
第5組 | 10 |
請結(jié)合圖表完成下列各題:
求表中a的值; 頻數(shù)分布直方圖補充完整;
若測試成績不低于80分為優(yōu)秀,則本次測試的優(yōu)秀率是多少?
第5組10名同學中,有4名男同學,現(xiàn)將這10名同學平均分成兩組進行對抗練習,且4名男同學每組分兩人,求小明與小強兩名男同學能分在同一組的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在頂點為P的拋物線y=a(x-h)2+k(a≠0)的對稱軸1的直線上取點A(h,k+),過A作BC⊥l交拋物線于B、C兩點(B在C的左側(cè)),點和點A關于點P對稱,過A作直線m⊥l.又分別過點B,C作直線BE⊥m和CD⊥m,垂足為E,D.在這里,我們把點A叫此拋物線的焦點,BC叫此拋物線的直徑,矩形BCDE叫此拋物線的焦點矩形.
(1)直接寫出拋物線y=x2的焦點坐標以及直徑的長.
(2)求拋物線y=x2-x+的焦點坐標以及直徑的長.
(3)已知拋物線y=a(x-h)2+k(a≠0)的直徑為,求a的值.
(4)①已知拋物線y=a(x-h)2+k(a≠0)的焦點矩形的面積為2,求a的值.
②直接寫出拋物線y=x2-x+的焦點短形與拋物線y=x2-2mx+m2+1公共點個數(shù)分別是1個以及2個時m的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com