【題目】已知:內(nèi)接于⊙,連接并延長交于點,交⊙于點,滿足.
(1)如圖1,求證:;
(2)如圖2,連接,點為弧上一點,連接,=,過點作,垂足為點,求證:;
(3)如圖3,在(2)的條件下,點為上一點,分別連接,,過點作,交⊙于點,,,連接,求的長.
【答案】(1)證明見解析;(2)證明見解析;(3).
【解析】
(1)如圖1中,連接AD.設∠BEC=3α,∠ACD=α,再根據(jù)圓周角定理以及三角形內(nèi)角和與外角的性質證明∠ACB=∠ABC即可解決問題;
(2)如圖2中,連接AD,在CD上取一點Z,使得CZ=BD.證明△ADB≌△AZC(SAS),推出AD=AZ即可解決問題;
(3)連接AD,PA,作OK⊥AC于K,OR⊥PC于R,CT⊥FP交FP的延長線于T.假設OH=a,PC=2a,求出sin∠OHK=,從而得出∠OHK=45°,再根據(jù)角度的轉化得出∠DAG=∠ACO=∠OAK,從而有tan∠ACD=tan∠DAG=tan∠OAK=,進而可求出DG,AG的長,再通過勾股定理以及解直角三角形函數(shù)可求出FT,PT的長即可解決問題.
(1)證明:如圖1中,連接AD.設∠BEC=3α,∠ACD=α.
∵∠BEC=∠BAC+∠ACD,
∴∠BAC=2α,
∵CD是直徑,
∴∠DAC=90°,
∴∠D=90°-α,
∴∠B=∠D=90°-α,
∵∠ACB=180°-∠BAC-∠ABC=180°-2α-(90°-α)=90°-α.
∴∠ABC=∠ACB,
∴AB=AC.
(2)證明:如圖2中,連接AD,在CD上取一點Z,使得CZ=BD.
∵=,
∴DB=CF,
∵∠DBA=∠DCA,CZ=BD,AB=AC,
∴△ADB≌△AZC(SAS),
∴AD=AZ,
∵AG⊥DZ,
∴DG=GZ,
∴CG=CZ+GZ=BD+DG=CF+DG.
(3)解:連接AD,PA,作OK⊥AC于K,OR⊥PC于R,CT⊥FP交FP的延長線于T.
∵CP⊥AC,
∴∠ACP=90°,
∴PA是直徑,
∵OR⊥PC,OK⊥AC,
∴PR=RC,∠ORC=∠OKC=∠ACP=90°,
∴四邊形OKCR是矩形,
∴RC=OK,
∵OH:PC=1:,
∴可以假設OH=a,PC=2a,
∴PR=RC=a,
∴RC=OK=a,sin∠OHK=,
∴∠OHK=45°.
∵OH⊥DH,
∴∠DHO=90°,
∴∠DHA=180°-90°-45°=45°,
∵CD是直徑,
∴∠DAC=90°,
∴∠ADH=90°-45°=45°,
∴∠DHA=∠ADH,
∴AD=AH,
∵∠COP=∠AOD,
∴AD=PC,
∴AH=AD=PC=2a,
∴AK=AH+HK=2a+a=3a,
在Rt△AOK中,tan∠OAK=,OA=,
∴sin∠OAK=,
∵∠ADG+∠DAG=90°,∠ACD+∠ADG=90°,
∴∠DAG=∠ACD,
∵AO=CO,
∴∠OAK=∠ACO,
∴∠DAG=∠ACO=∠OAK,
∴tan∠ACD=tan∠DAG=tan∠OAK=,
∴AG=3DG,CG=3AG,
∴CG=9DG,
由(2)可知,CG=DG+CF,
∴DG+12=9DG,
∴DG=,AG=3DG=3×=,
∴AD=,
∴PC=AD=.
∵sin∠F=sin∠OAK,
∴sin∠F=,
∴CT=,
FT=,
PT=,
∴PF=FT-PT=.
科目:初中數(shù)學 來源: 題型:
【題目】一只箱子里共有3個球,其中2個白球,1個紅球,它們除顏色外均相同。
(1)從箱子中任意摸出一個球是白球的概率是多少?
(2)從箱子中任意摸出一個球,不將它放回箱子,攪勻后再摸出一個球,求兩次摸出球的都是白球的概率,并畫出樹狀圖。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,對“隔離直線”給出如下定義:點是圖形上的任意一點,點是圖形上的任意一點,若存在直線:滿足且,則稱直線:是圖形與的“隔離直線”,如圖,直線:是函數(shù)的圖像與正方形的一條“隔離直線”.
(1)在直線①,②,③,④中,是圖函數(shù)的圖像與正方形的“隔離直線”的為 .
(2)如圖,第一象限的等腰直角三角形的兩腰分別與坐標軸平行,直角頂點的坐標是,⊙O的半徑為,是否存在與⊙O的“隔離直線”?若存在,求出此“隔離直線”的表達式:若不存在,請說明理由;
(3)正方形的一邊在軸上,其它三邊都在軸的左側,點是此正方形的中心,若存在直線是函數(shù)的圖像與正方形的“隔離直線”,請直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學數(shù)學興趣小組在一次課外學習與探究中遇到一些新的數(shù)學符號,他們將其中某些材料摘錄如下:
對于三個實數(shù)a,b,c,用M{a,b,c}表示這三個數(shù)的平均數(shù),用min{a,b,c}表示這三個數(shù)中最小的數(shù).例如:M{1,2,9}==4,min{1,2,﹣3}=﹣3,min{3,1,1}=1.
請結合上述材料,解決下列問題:
(1)M{(﹣2)2,22,﹣22}=_____;
(2)若min{3﹣2x,1+3x,﹣5}=﹣5,則x的取值范圍為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個盒子里有3個相同的小球,將3個小球分別標示號碼1、2、3,每次從盒子里隨機取出1個小球且取后放回,預計取球10次.若規(guī)定每次取球時,取出的號碼即為得分,則前八次的取球得分情況如下表所示
次數(shù) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
得分 | 2 | 1 | 1 | 2 | 2 | 3 | 2 | 3 |
(1)設第1次至第8次取球得分的平均數(shù)為,求的值:
(2)求事件“第9次和第10次取球得分的平均數(shù)等于”發(fā)生的概率;(列表法或樹狀圖)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有兩個口袋,口袋中裝有兩個分別標有數(shù)字2,3的小球,口袋中裝有三個分別標有數(shù)字的小球(每個小球質量、大小、材質均相同).小明先從口袋中隨機取出一個小球,用表示所取球上的數(shù)字;再從口袋中順次取出兩個小球,用表示所取兩個小球上的數(shù)字之和.
(1)用樹狀圖法或列表法表示小明所取出的三個小球的所有可能結果;
(2)求的值是整數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(2011廣西崇左,18,3分)已知:二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結論中:①abc>0;②2a+b<0;③a+b<m(am+b)(m≠1的實數(shù));④(a+c)2<b2;⑤a>1.其中正確的項是( )
A. ①⑤ B. ①②⑤ C. ②⑤ D. ①③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如果三角形的兩個內(nèi)角α與β滿足2α+β=90°,那么我們稱這樣的三角形為“準互余三角形”.
(1)若△ABC是“準互余三角形”,∠C>90°,∠A=60°,則∠B= °;
(2)如圖①,在Rt△ABC中,∠ACB=90°,AC=4,BC=5.若AD是∠BAC的平分線,不難證明△ABD是“準互余三角形”.試問在邊BC上是否存在點E(異于點D),使得△ABE也是“準互余三角形”?若存在,請求出BE的長;若不存在,請說明理由.
(3)如圖②,在四邊形ABCD中,AB=7,CD=12,BD⊥CD,∠ABD=2∠BCD,且△ABC是“準互余三角形”,求對角線AC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com