【題目】根據(jù)解答過程填空(理由或數(shù)學式) :如圖,∠DAF=∠F, ∠B=∠D,那么AB與DC平行嗎?
解:AB∥DC
∵∠DAF=∠F( ),
∴AD∥BF( )
∴∠D=∠DCF( )
∵∠B=∠D(已知),
∴∠ =∠DCF( )
∴AB∥DC( )
【答案】已知,內(nèi)錯角相等兩直線平行,兩直線平行內(nèi)錯角相等, B,等量代換,同位角相等兩直線平行.
【解析】
由∠DAF=∠F是已知條件,可得AD//BF(內(nèi)錯角相等兩直線平行)),由平行線的性質(zhì)可知填兩直線平行內(nèi)錯角相等;可得由∠D=∠DCF,因為∠B=∠D根據(jù)等量代換可知,∠B=∠DCF,可證AB∥DC,故填同位角相等兩直線平行.
解:AB∥DC
∵∠DAF=∠F( 已知 ),
∴AD∥BF(內(nèi)錯角相等兩直線平行 )
∴∠D=∠DCF( 兩直線平行內(nèi)錯角相等 )
∵∠B=∠D(已知),
∴∠ B =∠DCF( 等量代換 )
∴AB∥DC( 同位角相等兩直線平行 )
故答案為已知,內(nèi)錯角相等兩直線平行,兩直線平行內(nèi)錯角相等, B,等量代換,同位角相等兩直線平行.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,點E、F在AC上,且AF=CE,點G、H分別在AB、CD上,且AG=CH,AC與GH相交于點O.
(1)求證:EG//FH;
(2)GH、EF互相平分.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】兩根木條,一根長20cm,另一根長24cm,將它們一端重合且放在同一條直線上,此時兩根木條的中點之間的距離為( )
A. 2cm B. 4cm C. 2cm或22cm D. 4cm或44cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知四邊形為菱形,,,的兩邊分別與射線、相交于點、,且.
(1)如圖1,當點是線段的中點時,請直接寫出線段與之間的數(shù)量關(guān)系;
(2)如圖2,當點是線段上的任意一點(點不與點、重合)時,求證:;
(3)如圖3,當點在線段的延長線上,且時,求線段的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中有對角線AC與BD相等,已知AB=4,BC=3,則有AB2+BC2=AC2,矩形在直線MN上繞其右下角的頂點B向右旋轉(zhuǎn)90°至圖①位置,再繞右下角的頂點繼續(xù)向右旋轉(zhuǎn)至圖②位置……依次類推,則:
(1)AC=__________.
(2)這樣連續(xù)旋轉(zhuǎn)2019次后,頂點B在整個旋轉(zhuǎn)過程中所經(jīng)過的路程之和是________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A,B,C在一次函數(shù)的圖象上,它們的橫坐標依次為,1,2,分別過這些點作x軸與y軸的垂線,則圖中陰影部分的面積之和是( 。
A. 1 B. 3 C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在手工制作課上,老師組織七年級(2)班的學生用硬紙制作圓柱形茶葉筒.七年級(2)班共有學生44人,其中男生人數(shù)比女生人數(shù)少2人,并且每名學生每小時剪筒身50個或剪筒底120個.
(1)七年級(2)班有男生、女生各多少人?
(2)要求一個筒身配兩個筒底,為了使每小時剪出的筒身與筒底剛好配套,應(yīng)該分配多少名學生剪筒身,多少名學生剪筒底?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,對角線AC、BD交于點O,BE平分∠ABC交AC于點F,交AD于點E,且∠DBF=15°,求證:(1)AO=AE; (2)∠FEO的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com