【題目】如圖,在中,,,,垂足為,點(diǎn)是邊上的一個(gè)動(dòng)點(diǎn),過點(diǎn)作交線段于點(diǎn),作交于點(diǎn),交線段于點(diǎn),設(shè).
(1)用含的代數(shù)式表示線段的長(zhǎng);
(2)設(shè)的面積為,求與之間的函數(shù)關(guān)系式,并寫出定義域;
(3)能否為直角三角形?如果能,求出的長(zhǎng);如果不能,請(qǐng)說明理由.
【答案】(1);(2),定義域?yàn)椋?/span>;(3)當(dāng)BP為或時(shí),為直角三角形.
【解析】
(1)根據(jù)等腰三角形的性質(zhì)可得BD=CD=3,通過證明△ABD∽△GBP,可得,即可得出DG的長(zhǎng)度;
(2)根據(jù)相似三角形的性質(zhì)可得,,根據(jù)三角形的面積公式即可表達(dá)出;
(3)分EF⊥PG,EF⊥PF兩種情況,根據(jù)相似三角形的性質(zhì)即可求出BP的長(zhǎng)度.
解:(1)∵,,,
∴BD=CD=3
在Rt△ABD中,,
∵∠B=∠B,∠ADB=∠BPG=90°,
∴△ABD∽△GBP
∴,
∴,
∴,
故
(2)∵PF∥AC
∴△BFP∽△BCA
∴
即
∴
∴,
∵∠DGE+∠DEG=∠DGE+∠ABD,
∴∠DEG=∠ABD,∠ADG=∠ADB=90°,
∴△DEG∽△DBA
∴,
∴,
整理得:,
∴
定義域?yàn)椋?/span>
(3)若EF⊥PG時(shí),
∵EF⊥PG,ED⊥FG,
∴∠FED+∠DEG=90°,∠FED+∠EFD=90°,
∴∠DEG=∠EFD,且∠EDF=∠EDG,
∴△EFD∽△GDE,
∴
∴,
∴,
整理得:,
解得:,(不合題意,舍去),
若EF⊥PF,
∴∠PFB+∠EFD=90°,且∠PFB=∠ACB,∠ACB+∠DAC=90°,
∴∠EFD=∠DAC,且∠EDF=∠ADC=90°,
∴△EDF∽△CDA
∴
,
解得:,
綜上所述,當(dāng)BP為或時(shí),為直角三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解題:學(xué)習(xí)了二次根式后,你會(huì)發(fā)現(xiàn)一些含有根號(hào)的式子可以寫成另一個(gè)式子的平方,如3+2=(1+)2,我們來進(jìn)行以下的探索:
設(shè)a+b=(m+n)2(其中a,b,m,n都是正整數(shù)),則有a+b=m2+2n2+2mn,∴a=m2+2n2,b=2mn,這樣就得出了把類似a+b的式子化為平方式的方法,請(qǐng)仿照上述方法探索并解決下列問題:
(1)當(dāng)a,b,m,n都為正整數(shù)時(shí),若a+b=(m+n)2,用含m,n的式子分別表示a,b,得a= ,b= .
(2)若a﹣4=(m﹣n)2且a,m,n都為正整數(shù),求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)要經(jīng)營(yíng)一種新上市的文具,進(jìn)價(jià)為20元,試營(yíng)銷階段發(fā)現(xiàn):當(dāng)銷售單價(jià)是25元時(shí),每天的銷售量為250件,銷售單價(jià)每上漲1元,每天的銷售量就減少10件
(1)寫出商場(chǎng)銷售這種文具,每天所得的銷售利潤(rùn)(元)與銷售單價(jià)(元)之間的函數(shù)關(guān)系式;
(2)求銷售單價(jià)為多少元時(shí),該文具每天的銷售利潤(rùn)最大;
(3)商場(chǎng)的營(yíng)銷部結(jié)合上述情況,提出了A、B兩種營(yíng)銷方案
方案A:該文具的銷售單價(jià)高于進(jìn)價(jià)且不超過30元;
方案B:每天銷售量不少于10件,且每件文具的利潤(rùn)至少為25元
請(qǐng)比較哪種方案的最大利潤(rùn)更高,并說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,若二次函數(shù)y=ax2+bx+c(a≠0)圖象的對(duì)稱軸為x=1,與y軸交于點(diǎn)C,與x軸交于點(diǎn)A、點(diǎn)B(﹣1,0),則
①二次函數(shù)的最大值為a+b+c;
②a﹣b+c<0;
③b2﹣4ac<0;
④當(dāng)y>0時(shí),﹣1<x<3,其中正確的個(gè)數(shù)是( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+2x+c的圖象經(jīng)過點(diǎn)C(0,3),與x軸分別交于點(diǎn)A,點(diǎn)B(3,0).點(diǎn)P是直線BC上方的拋物線上一動(dòng)點(diǎn).
(1)求二次函數(shù)y=ax2+2x+c的表達(dá)式;
(2)連接PO,PC,并把△POC沿y軸翻折,得到四邊形POP′C.若四邊形POP′C為菱形,請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo);
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),四邊形ACPB的面積最大?求出此時(shí)P點(diǎn)的坐標(biāo)和四邊形ACPB的最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩地相距300km,一輛貨車和一輛轎車先后從甲地出發(fā)向乙地.如圖,線段OA表示貨車離甲地距離y(km)與時(shí)間x(h)之間的函數(shù)關(guān)系,折線BCDE表示轎車離甲地距離y(km)與時(shí)間x(h)之間的函數(shù)關(guān)系.請(qǐng)根據(jù)圖象,解答下列問題:
(1)線段CD表示轎車在途中停留了 h;
(2)求線段DE對(duì)應(yīng)的函數(shù)解析式;
(3)求轎車從甲地出發(fā)后經(jīng)過多長(zhǎng)時(shí)間追上貨車.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將沿著過的中點(diǎn)的直線折疊,使點(diǎn)落在邊上的處,稱為第一次操作,折痕到的距離為;還原紙片后,再將沿著過的中點(diǎn)的直線折疊,使點(diǎn)落在邊上的處,稱為第二次操作,折痕到的距離記為;按上述方法不斷操作下去……經(jīng)過第次操作后得到折痕,到的距離記為.若,則的值為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一次函數(shù)y=-x+6的圖象上取一點(diǎn)P,作PA⊥x軸于點(diǎn)A,PB⊥y軸于點(diǎn)B,且矩形PBOA的面積為5,則在x軸上方滿足上述條件的點(diǎn)P是( )
A.(1,5)、(5,1)
B.(1,5)、(5,1)、(3+,3-)、(3-,3+)
C.(1,5)、(5,1)、(3-,3+)
D.(1,5)、(2+,2-)、(2-,2+)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,△ABC是等邊三角形,點(diǎn)D、E分別在邊BC、AC上,∠ADE=60°.
(1)求證:△ABD∽△DCE;
(2)如果AB=3,EC=,求DC的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com