【題目】如圖,已知二次函數(shù)y=ax2+2x+c的圖象經(jīng)過點(diǎn)C(0,3),與x軸分別交于點(diǎn)A,點(diǎn)B(3,0).點(diǎn)P是直線BC上方的拋物線上一動(dòng)點(diǎn).
(1)求二次函數(shù)y=ax2+2x+c的表達(dá)式;
(2)連接PO,PC,并把△POC沿y軸翻折,得到四邊形POP′C.若四邊形POP′C為菱形,請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo);
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),四邊形ACPB的面積最大?求出此時(shí)P點(diǎn)的坐標(biāo)和四邊形ACPB的最大面積.
【答案】(1)y=﹣x2+2x+3(2)(,)(3)當(dāng)點(diǎn)P的坐標(biāo)為(,)時(shí),四邊形ACPB的最大面積值為
【解析】
(1)根據(jù)待定系數(shù)法,可得函數(shù)解析式;
(2)根據(jù)菱形的對(duì)角線互相垂直且平分,可得P點(diǎn)的縱坐標(biāo),根據(jù)自變量與函數(shù)值的對(duì)應(yīng)關(guān)系,可得P點(diǎn)坐標(biāo);
(3)根據(jù)平行于y軸的直線上兩點(diǎn)間的距離是較大的縱坐標(biāo)減較小的縱坐標(biāo),可得PQ的長,根據(jù)面積的和差,可得二次函數(shù),根據(jù)二次函數(shù)的性質(zhì),可得答案.
(1)將點(diǎn)B和點(diǎn)C的坐標(biāo)代入函數(shù)解析式,得
解得
二次函數(shù)的解析式為y=﹣x2+2x+3;
(2)若四邊形POP′C為菱形,則點(diǎn)P在線段CO的垂直平分線上,
如圖1,連接PP′,則PE⊥CO,垂足為E,
∵C(0,3),
∴
∴點(diǎn)P的縱坐標(biāo),
當(dāng)時(shí),即
解得(不合題意,舍),
∴點(diǎn)P的坐標(biāo)為
(3)如圖2,
P在拋物線上,設(shè)P(m,﹣m2+2m+3),
設(shè)直線BC的解析式為y=kx+b,
將點(diǎn)B和點(diǎn)C的坐標(biāo)代入函數(shù)解析式,得
解得
直線BC的解析為y=﹣x+3,
設(shè)點(diǎn)Q的坐標(biāo)為(m,﹣m+3),
PQ=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m.
當(dāng)y=0時(shí),﹣x2+2x+3=0,
解得x1=﹣1,x2=3,
OA=1,
S四邊形ABPC=S△ABC+S△PCQ+S△PBQ
當(dāng)m=時(shí),四邊形ABPC的面積最大.
當(dāng)m=時(shí),,即P點(diǎn)的坐標(biāo)為
當(dāng)點(diǎn)P的坐標(biāo)為時(shí),四邊形ACPB的最大面積值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店購進(jìn)一批成本為每件 30 元的商品,經(jīng)調(diào)查發(fā)現(xiàn),該商品每天的銷售量 y(件)與銷售單價(jià) x(元)之間滿足一次函數(shù)關(guān)系,其圖象如圖所示.
(1)求該商品每天的銷售量 y 與銷售單價(jià) x 之間的函數(shù)關(guān)系式;
(2)若商店按單價(jià)不低于成本價(jià),且不高于 50 元銷售,則銷售單價(jià)定為多少,才能使銷售該商品每天獲得的利潤 w(元)最大?最大利潤是多少?
(3)若商店要使銷售該商品每天獲得的利潤不低于 800 元,則每天的銷售量最少應(yīng)為多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,點(diǎn)A在以BC為直徑的半圓內(nèi).僅用 (不能使用圓規(guī))分別按下列要求畫圖(保留畫圖痕跡).
(1)請(qǐng)?jiān)趫D中畫出BA邊上的高CD;
(2)請(qǐng)?jiān)趫D中畫出弦DE,使得DE∥BC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某區(qū)各街道居民積極響應(yīng)“創(chuàng)文明社區(qū)”活動(dòng),據(jù)了解,某街道居民人口共有7.5萬人,街道劃分為A,B兩個(gè)社區(qū),B社區(qū)居民人口數(shù)量不超過A社區(qū)居民人口數(shù)量的2倍.
(1)求A社區(qū)居民人口至少有多少萬人?
(2)街道工作人員調(diào)查A,B兩個(gè)社區(qū)居民對(duì)“社會(huì)主義核心價(jià)值觀”知曉情況發(fā)現(xiàn):A社區(qū)有1.2萬人知曉,B社區(qū)有1萬人知曉,為了提高知曉率,街道工作人員用了兩個(gè)月的時(shí)間加強(qiáng)宣傳,A社區(qū)的知曉人數(shù)平均月增長率為m%,B社區(qū)的知曉人數(shù)第一個(gè)月增長了m%,第二個(gè)月增長了2m%,兩個(gè)月后,街道居民的知曉率達(dá)到76%,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC的斜邊AB在y軸上,邊AC與x軸交于點(diǎn)D,經(jīng)過A,D兩點(diǎn)的圓的圓心F恰好在y軸上,⊙F與邊BC相切于點(diǎn)E,與x軸交于點(diǎn)M,與y軸相交于另一點(diǎn)G,連接AE.
(1)求證:AE平分∠BAC;
(2)若點(diǎn)A,D的坐標(biāo)分別為(0,﹣1),(2,0),求⊙F的半徑;
(3)求經(jīng)過三點(diǎn)M,F,D的拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是正方形,△ADF按順時(shí)針方向旋轉(zhuǎn)一定角度后得到△ABE,點(diǎn)E落在AD邊上,若AF=4.AB=7.
(1)旋轉(zhuǎn)中心為 ;旋轉(zhuǎn)角度為 ;
(2)求DE的長度;
(3)指出BE與DF的關(guān)系如何?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】教科書中這樣寫道:“我們把多項(xiàng)式及叫做完全平方式”,如果一個(gè)多項(xiàng)式不是完全平方式,我們常做如下變形:先添加一個(gè)適當(dāng)?shù)捻?xiàng)使式子中出現(xiàn)完全平方式,再減去這個(gè)項(xiàng),使整個(gè)式子的值不變這種方法叫做配方法.配方法是一種重要的解決問題的數(shù)學(xué)方法,不僅可以將一個(gè)看似不能分解的多項(xiàng)式分解因式,還能解決一些與非負(fù)數(shù)有關(guān)的問題或求化數(shù)式最大值.最小值等.
例如:分解因式
;例如求代數(shù)式的最小值..可知當(dāng)時(shí),有最小值,最小值是,根據(jù)閱讀材料用配方法解決下列問題:
(1)分解因式: _____
(2)當(dāng)為何值時(shí),多項(xiàng)式有最小值,并求出這個(gè)最小值.
(3)當(dāng)為何值時(shí).多項(xiàng)式有最小值并求出這個(gè)最小值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC=13cm,BC=10cm,M、N分別是AB、AC的中點(diǎn),D、E在BC上,且DE=5cm,連結(jié)DN、ME交于H,則△HDE的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在小水池旁有一盞路燈,已知支架AB的長是0.8m,A端到地面的距離AC是4m,支架AB與燈柱AC的夾角為65°.小明在水池的外沿D測(cè)得支架B端的仰角是45°,在水池的內(nèi)沿E測(cè)得支架A端的仰角是50°(點(diǎn)C、E、D在同一直線上),求小水池的寬DE.(結(jié)果精確到0.1m)(sin65°≈0.9,cos65°≈0.4,tan50°≈1.2)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com