【題目】如圖,在平面直角坐標系中,直線l:y=與y軸交于點B1,以OB1為一邊在OB1右側(cè)作等邊三角形A1OB1,過點A1作A1B2平行于y軸,交直線l于點B2,以A1B2為一邊在A1B2右側(cè)作等邊三角形A2A1B2,過點A2作A2B3平行于y軸,交直線l于點B3,以A2B3為一邊在A2B3右側(cè)作等邊三角形A3A2B3,……則點A2019的縱坐標是( 。
A.B.C.D.
【答案】B
【解析】
先根據(jù)題意得出B1(0,1),OB1=1,如圖,過A1作A1A⊥OB1于A,再得出A1的縱坐標為=,再利用含30度角的直角三角形性質(zhì)得出A1B2=2A1B1=2,過A2作A2B⊥A1B2于B,得出A2的縱坐標為+1=,依次類推得出A2019的縱坐標.
解:∵直線l:y=與y軸交于點B1,
∴B1(0,1),OB1=1.
如圖,過A1作A1A⊥OB1于A,則OA= OB1=,
即A1的縱坐標為= .
設直線l與x軸交于點M,則∠OMB1=60°,
∴∠OB1M=30°,
∵∠OB1A1=60°,
∴∠A1B1B2=90°,
又∵∠A1B2B1=∠OB1M=30°,
∴A1B2=2A1B1=2,
過A2作A2B⊥A1B2于B,則A1B=A1B2=1,
即A2的縱坐標為+1=,
過A3作A3C⊥A2B3于C,
同理可得,A2B3=2A2B2=4,A2C=A2B3=2,
即A3的縱坐標為+1+2=,
同理可得,A4的縱坐標為+1+2+4=,
由此可得,An的縱坐標為 ,
∴點A2019的縱坐標是 ,
故選:B.
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在□ABCD中,點G為對角線AC的中點,過點G的直線EF分別交邊AB、CD于點E、F,過點G的直線MN分別交邊AD、BC于點M、N,且∠AGE=∠CGN.
(1)求證:四邊形ENFM為平行四邊形;
(2)當四邊形ENFM為矩形時,求證:BE=BN.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩名隊員參加射擊訓練,成績分別繪制成下列兩個統(tǒng)計圖:
根據(jù)以上信息,整理分析數(shù)據(jù)如下:
平均成績(環(huán)) | 中位數(shù)(環(huán)) | 眾數(shù)(環(huán)) | 方差 | |
甲 | a | 7 | 7 | 1.2 |
乙 | 7 | b | 8 | c |
(1)寫出表格中a,b,c的值;
(2)分別運用表中的四個統(tǒng)計量,簡要分析這兩名隊員的射擊成績,若選派其中一名參賽,你認為應選哪名隊員?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明在學習反比例函數(shù)的圖象時,他的老師要求同學們根據(jù)“探索一次函數(shù)y1=x+1的圖象”的基本步驟,在紙上逐步探索函數(shù)y2=的圖象,并且在黑板上寫出4個點的坐標:A(,),B(1,2),C(1,),D(﹣2,﹣1).
(1)在A、B、C、D四個點中,任取一個點,這個點既在直線y1=x+1又在雙曲線y2=上的概率是多少?
(2)小明從A、B、C、D四個點中任取兩個點進行描點,求兩點都落在雙曲線y2=上的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,圓O的直徑為5,在圓O上位于直徑AB的異側(cè)有定點C和動點P,已知BC∶CA=4∶3,點P在半圓弧AB上運動(不與A、B重合),過C作CP的垂線CD交PB的延長線于D點
(1)求證:AC·CD=PC·BC;
(2)當點P運動到AB弧中點時,求CD的長;
(3)當點P運動到什么位置時,△PCD的面積最大?并求這個最大面積S.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)關(guān)于x,y的方程組滿足x+y=5,求m的值.
(2)關(guān)于x的一元二次方程x2﹣(m﹣1)x﹣m=0的兩個根x1,x2滿足x12+x22=5,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,∠BAD=∠ADC=90°,AB=AD=2,CD=,點P在四邊形ABCD的邊上.若P到BD的距離為,則點P的個數(shù)為( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校對A《唐詩》、B《宋詞》、C《蒙山童韻》、D其它,這四類著作開展“最受歡迎的傳統(tǒng)文化著作”調(diào)查,隨機調(diào)查了若干名學生(每名學生必選且只能選這四類著作中的一種)并將得到的信息繪制了下面兩幅不完整的統(tǒng)計圖:
(1)求一共調(diào)查了多少名學生;
(2)請將條形統(tǒng)計圖補充完整;
(3)該校語文老師想從這四類著作中隨機選取兩類作為學生寒假必讀書籍,請用樹狀圖或列表的方法求恰好選中《宋詞》和《蒙山童韻》的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關(guān)于x的一元二次方程ax2+bx+c=0的兩實數(shù)根為x1,x2,根據(jù)一元二次方程解的意義和因式分解法解一元二次方程可知,x1,x2也是(x﹣x1)(x﹣x2)=0的兩個實數(shù)根,所以ax2+bx+c=a(x﹣x1)(x﹣x2).
利用這個結(jié)論可以解決一些相關(guān)問題.
(1)實數(shù)范圍內(nèi)因式分解:
例:分解因式2x2+2x﹣1
解:令2x2+2x﹣1=0,解這個方程,得
=.
即x1=,x2=.
所以 2x2+2x﹣1=.
試仿照上例在實數(shù)范圍內(nèi)分解因式:x2﹣6x+1;
(2)解不等式:x2+2x﹣1>0;
(3)靈活運用:
已知方程(x﹣a)(x﹣b)﹣x=0的兩個實數(shù)根是c、d,求方程(2x﹣c)(2x﹣d)+2x=0的根.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com