【題目】本題滿分9分如圖,ABC的一邊AB為直徑的半圓與其它兩邊AC,BC的交點(diǎn)分別為D,E,

1試判斷ABC的形狀,并說(shuō)明理由;

2已知半圓的半徑為5,BC=12的值

【答案】1等腰三角形;2

【解析】

試題分析:根據(jù)AB是直徑則我們很容易知道,同時(shí)也是進(jìn)而就有

,而又,則DE=BE,進(jìn)而,所以,而ABED可以看成是個(gè)圓內(nèi)接四邊形,,所以ABC為等腰三角形

2問(wèn)要求的是的正弦值,由圖知,AB=10,要求正弦值就必須求得AD的值,,我們可以利用等腰三角形一腰上的高求出AD=28這樣我們就能求出

試題解析:1AB為直徑,

ADC=BDE=90°C+DBC=90°,CDE+EDB=90°,

,

EDB=DBC,

C=CDE,

CE=DE

,

DE=BE,CE=BE,

AE垂直平分BC,

AC=BC,

ABC為等腰三角形

A,B,E,D四點(diǎn)共圓,

CDE=CBA,C公用

CDE∽△CBA,

BC=12,半徑為5,

1得AC=BC=10CE=6,

解得CD=72

AD=AC-CD=28;

sinABD==

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面坐標(biāo)系中,點(diǎn)、點(diǎn)分別在軸、軸的正半軸上,且,另有兩點(diǎn),、均大于;

1)連接,求證:

2)連接、、,若,,,求的度數(shù);

3)若,在線段上有一點(diǎn),且,,求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用若干個(gè)形狀、大小完全相同的長(zhǎng)方形紙片圍成正方形,4個(gè)長(zhǎng)方形紙片圍成如圖1所示的正方形,其涂色部分的面積是258個(gè)長(zhǎng)方形紙片圍成如圖2所示的正方形,其涂色部分的面積是16;12個(gè)長(zhǎng)方形紙片圍成如圖3所示的正方形,其涂色部分的面積是_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O的半徑為2,弦BC=2,點(diǎn)A是優(yōu)弧BC上一動(dòng)點(diǎn)(不包括端點(diǎn)),ABC的高BD、CE相交于點(diǎn)F,連結(jié)ED.下列四個(gè)結(jié)論:

①∠A始終為60°;

②當(dāng)∠ABC=45°時(shí),AE=EF;

③當(dāng)ABC為銳角三角形時(shí),ED=

④線段ED的垂直平分線必平分弦BC.

其中正確的結(jié)論是_____.(把你認(rèn)為正確結(jié)論的序號(hào)都填上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】【探索新知】:如圖1,射線OC在∠AOB的內(nèi)部,圖中共有3個(gè)角:∠AOB,AOC和∠BOC,若其中有一個(gè)角的度數(shù)是另一個(gè)角度數(shù)的兩倍,則稱射線OC是∠AOB巧分線

1)一個(gè)角的平分線   這個(gè)角的巧分線;(填不是

2)如圖2,若∠MPN=α,且射線PQ是∠MPN巧分線,則∠MPQ=   ;(用含α的代數(shù)式表示出所有可能的結(jié)果)

【深入研究】:如圖2,若∠MPN=60°,且射線PQ繞點(diǎn)PPN位置開(kāi)始,以每秒10°的速度逆時(shí)針旋轉(zhuǎn),當(dāng)PQPN180°時(shí)停止旋轉(zhuǎn),旋轉(zhuǎn)的時(shí)間為t秒.

3)當(dāng)t為何值時(shí),射線PM是∠QPN巧分線;

4)若射線PM同時(shí)繞點(diǎn)P以每秒的速度逆時(shí)針旋轉(zhuǎn),并與PQ同時(shí)停止,請(qǐng)直接寫(xiě)出當(dāng)射線PQ是∠MPN巧分線時(shí)t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD的四個(gè)頂點(diǎn)分別在反比例函數(shù)(x>0,0<m<n)的圖象上,對(duì)角線BD//y軸,且BD⊥AC于點(diǎn)P.已知點(diǎn)B的橫坐標(biāo)為4.

(1)當(dāng)m=4,n=20時(shí).

①若點(diǎn)P的縱坐標(biāo)為2,求直線AB的函數(shù)表達(dá)式.

②若點(diǎn)P是BD的中點(diǎn),試判斷四邊形ABCD的形狀,并說(shuō)明理由.

(2)四邊形ABCD能否成為正方形?若能,求此時(shí)m,n之間的數(shù)量關(guān)系;若不能,試說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知燈塔M方圓一定范圍內(nèi)有鐳射輔助信號(hào),一艘輪船在海上從南向北方向以一定的速度勻速航行,輪船在A處測(cè)得燈塔M在北偏東30°方向,行駛1小時(shí)后到達(dá)B處,此時(shí)剛好進(jìn)入燈塔M的鐳射信號(hào)區(qū),測(cè)得燈塔M在北偏東45°方向,則輪船通過(guò)燈塔M的鐳射信號(hào)區(qū)的時(shí)間為( 。

A. 1)小時(shí) B. +1)小時(shí) C. 2小時(shí) D. 小時(shí)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ADBC,DC⊥BC, AE平分∠BAD, ECD中點(diǎn),試探索AD、BCAB之間有何關(guān)系?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A,B在長(zhǎng)方形的邊上.

1)用圓規(guī)和無(wú)刻度的直尺在長(zhǎng)方形的內(nèi)部作∠ABC=∠ABO;(保留作圖痕跡,不寫(xiě)作法)

2)在(1)的條件下,若BE是∠CBD的角平分線,探索ABBE的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案