【題目】如圖,點A在雙曲線yk≠0)的第一象限的分支上,AB垂直y軸于點B,點Cx軸正半軸上,OC2AB,點E在線段AC上,且AE3EC,點DOB的中點,連接CD,若CDE的面積為1,則k的值為_____

【答案】

【解析】

設(shè)Aa,b),則C2a0),D0),根據(jù)三角形面積公式,由AE3EC得到SADC4SCDE4,由于S梯形ABOCSABD+SOCD+SADC,則a+2abab+2ab+4,整理得ab,然后根據(jù)反比例函數(shù)圖象上點的坐標特征即可得到k

解:設(shè)Aab),

OC2AB,點DOB的中點,

C2a,0),D0b),

AE3ECCDE的面積為1,

SADC4SCDE4,

S梯形ABOCSABD+SOCD+SADC,

a+2abab+2ab+4,

ab,

∵點A在雙曲線yk≠0)的圖象上,

k

故答案為:

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】為積極參與鄂州市全國文明城市創(chuàng)建活動,我市某校在教學樓頂部新建了一塊大型宣傳牌,如下圖.小明同學為測量宣傳牌的高度,他站在距離教學樓底部6米遠的地面處,測得宣傳牌的底部的仰角為,同時測得教學樓窗戶處的仰角為(、、在同一直線上).然后,小明沿坡度的斜坡從走到處,此時正好與地面平行.

(1)求點到直線的距離(結(jié)果保留根號)

(2)若小明在處又測得宣傳牌頂部的仰角為,求宣傳牌的高度(結(jié)果精確到0.1米,,)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了迎接“51”小長假的購物高峰,大冶雨潤某運動品牌服裝店準備購進甲、乙兩種服裝,已知每件甲服裝進價比每件乙服裝進價多20元,售價在進價的基礎(chǔ)上加價50%,通過初步預算,若以4800元購進的甲服裝比以4200元購進乙服裝的件數(shù)少10件.

1)求甲、乙兩種服裝的銷售單價.

2)現(xiàn)老板計劃購進兩種服裝共100件,其中甲種服裝不少于65件,若購進這100件服裝的費用不超過7500元,則甲種服裝最多購進多少件?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線C的解析式為yx2+2x3,Cx軸交于點AB(點A在點B左側(cè)),與y軸交于點D,頂點為P

(Ⅰ)求點AB,D,P的坐標;

(Ⅱ)若將拋物線C沿著直線PD的方向平移得到拋物線C′;

當拋物線C′與直線y2x5只有一個公共點時,求拋物線C′的解析式;

Mxm,ym)是中拋物線C′上一點,若﹣6xm2ym為整數(shù),求滿足條件的點M的個數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平行四邊形ABCD中,點EAD邊上,連接BECE,EB平分∠AEC .

(1)如圖1,判斷△BCE的形狀,并說明理由;

(2)如圖2,若∠A=90°,BC=5,AE=1,求線段BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在邊長為4正方形OABC中,OB為對角線,過點OOB的垂線.以點O為圓心,r為半徑作圓,過點C做⊙O的兩條切線分別交OB垂線、BO延長線于點DE,CDCE分別切⊙O于點P、Q,連接AE

1)請先在一個等腰直角三角形內(nèi)探究tan22.5°的值;

2)求證:

DOOE;

AECD,且AECD

3)當OAOD時:

①求∠AEC的度數(shù);

②求r的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校組織學生開展了“2020新冠疫情”相關(guān)的手抄報競賽.對于手抄報的主題,組織者提出了兩條指導性建議:

1A類“武漢加油”、B類“最美逆行者”、C類“萬眾一心抗擊疫情”、D類“如何預防新型冠狀病毒”4個中任選一個;

2E類為自擬其它與疫情相關(guān)的主題.

評獎之余,為了解學生的選題傾向,發(fā)掘出最能引發(fā)學生觸動的主題素材,組織者隨機抽取了部分作品進行了統(tǒng)計,并將統(tǒng)計結(jié)果繪制成了如下兩幅尚不完整的統(tǒng)計圖.

請根據(jù)以上信息回答:

1)本次抽樣調(diào)查的學生總?cè)藬?shù)是  ,并補全條形統(tǒng)計圖;

2)扇形統(tǒng)計圖中,“C”對應(yīng)的扇形圓心角的度數(shù)是   x   ,yz   

3)本次抽樣調(diào)查中,“學生手抄報選題”最為廣泛的是   類.(填字母)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,從點A0,2)發(fā)出一束光,經(jīng)x軸反射,過點B3,),則這束光從點A到點B所經(jīng)過的路徑的長為____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,在等腰中,如圖①,在等腰中,,平分于點.點為線段上一點(不與端點、重合),,的延長線交于點,與交于點,連接、

(1)求證:

(2)求的度數(shù);

(3)探究線段之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

同步練習冊答案