【題目】如圖,在長和寬分別是a,b的長方形的四個角都剪去一個邊長為x的正方形,折疊后,做成一無蓋的盒子(單位:cm).

(1)用a,b,x表示紙片剩余部分的面積;

(2)用a,b,x表示盒子的體積;

(3)當a=10,b=8且剪去的每一個小正方形的面積等于4 cm2時,求剪去的每一個正方形的邊長及所做成的盒子的體積.

【答案】(1) (ab-4x2)cm2(2) x(a-2x)(b-2x)cm3(3) 48cm3

【解析】

(1)剩余部分的面積=原矩形的面積-四個小正方形的面積;
(2)體積=底面積×高;
(3)根據(jù)正方形的面積求x的值,代入(2)所得的代數(shù)式即可求得體積.

(1)剩余部分的面積(ab4x2)cm2;

(2)盒子的體積為:x(a2x)(b2x)cm3

(3)x2=4,得x=2,

a=10,b=8,x=2,

x(a2x)(b2x),

=2(102×2)(82×2),

=2×6×4,

=48(cm3).

答:盒子的體積為48立方厘米.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線ly=﹣x2+bx+cbc為常數(shù)),其頂點E在正方形ABCD內(nèi)或邊上,已知點A(1,2),B(1,1),C(2,1).

(1)直接寫出點D的坐標_____________;

(2)l經(jīng)過點B,C,l的解析式;

(3)lx軸交于點M,N,l的頂點E與點D重合時,求線段MN的值;當頂點E在正方形ABCD內(nèi)或邊上時,直接寫出線段MN的取值范圍;

(4)l經(jīng)過正方形ABCD的兩個頂點,直接寫出所有符合條件的c的值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,O是坐標原點。直線y=-x+b經(jīng)過點A(2,1),AB⊥x軸于B,連結(jié)AO。

(1)求b的值;

(2)M是直線y=-x+b上異于A的動點,且在第一象限內(nèi)。過M作x軸的垂線,垂足為N。若△MON的面積與△AOB的面積相等,求點M的坐標。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,四邊形ABCD為矩形,,,點ECD的中點,點PAB上以每秒2個單位的速度由AB運動,設運動時間為t秒.

1)當點P在線段AB上運動了t秒時,__________________(用代數(shù)式表示);

2t為何值時,四邊形PDEB是平行四邊形:

3)在直線AB上是否存在點Q,使以D、E、Q、P四點為頂點的四邊形是菱形?若存在,求出t的值:若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△AOB中,OA=OB=8,∠AOB=90°,矩形CDEF的頂點C、D、F分別在邊AO、OB、AB上。

(1)如圖1,若C、D恰好是邊AO、OB的中點,則此時矩形CDEF的面積為_________;

(2)如圖2,若=,求矩形CDEF面積的最大值。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在△ABC 中,∠C=90°,∠BAC 的平分線 AD BC于點 D,過點 D DEAD AB 于點 E,以 AE 為直徑作⊙O

(1)求證:BC 是⊙O 的切線;

(2)若 AC=3,BC=4,求 BE 的長.

(3)在(2)的條件中,求 cosEAD 的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知函數(shù)yax22ax1(a是常數(shù),a≠0),下列結(jié)論正確的是( )

A. a1,函數(shù)圖象過點(1,1)

B. a=-2,函數(shù)圖象與x軸沒有交點

C. a>0,則當x≥1,yx的增大而減小

D. a<0,則當x≤1,yx的增大而增大

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的一元二次方程

1)求證:方程有兩個不相等的實數(shù)根;

2)若△ABC的兩邊ABAC的長是方程的兩個實數(shù)根,第三邊BC的長為5。當△ABC是等腰三角形時,求k的值。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,AB為直徑,點D在⊙O上,過點D作⊙O切線與AC的延長線交于點E,ED∥BC,連接AD交BC于點F.

(1)求證:∠BAD=∠DAE;

(2)若AB=6,AD=5,求DF的長.

查看答案和解析>>

同步練習冊答案