【題目】如圖,給正五邊形的頂點(diǎn)依次編號為1,2,3,45.若從某一頂點(diǎn)開始,沿正五邊形的邊順時針行走,頂點(diǎn)編號的數(shù)字是幾,就走幾個邊長,則稱這種走法為一次“移位”.如:小宇在編號為3的頂點(diǎn)時,他應(yīng)走3個邊長,即從3→4→5→1為第一次“移位”,這時他到達(dá)編號為1的頂點(diǎn);然后從1→2為第二次“移位”.若小宇從編號為2的頂點(diǎn)開始,第20次“移位”后,他所處頂點(diǎn)的編號是( 。

A.1B.2C.3D.4

【答案】B

【解析】

根據(jù)移位的特點(diǎn)確定出前幾次的移位情況,從而找出規(guī)律,然后解答即可.

解:根據(jù)題意,小宇從編號為2的頂點(diǎn)開始,第1次移位到點(diǎn)4

2次移位到達(dá)點(diǎn)3,

3次移位到達(dá)點(diǎn)1,

4次移位到達(dá)點(diǎn)2,

依此類推,4次移位后回到出發(fā)點(diǎn),

20÷45

所以第20次移位為第5個循環(huán)組的第4次移位,到達(dá)點(diǎn)2

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線軸于點(diǎn),交軸于點(diǎn),點(diǎn)軸上一動點(diǎn),以點(diǎn)為圓心,以1個單位長度為半徑作,當(dāng)與直線相切時,點(diǎn)的坐標(biāo)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國古代數(shù)學(xué)著作《九章算術(shù)》中記載了弓形面積的計算方法.如圖,弓形的弦長AB30cm,拱高(弧的中點(diǎn)到弦的中點(diǎn)之間的距離)CD15cm,則這個弓形的面積是( 。cm2.

A.300π-450B.900π-225C.900π-450D.300π-225

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB⊙O的直徑,F⊙O外一點(diǎn),過點(diǎn)FFD⊥AB于點(diǎn)D,交弦AC于點(diǎn)E,且FC=FE.

(1)求證:FC⊙O的切線;

(2)若⊙O的半徑為5,cos∠FCE=,求弦AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下表是小安填寫的數(shù)學(xué)實踐活動報告的部分內(nèi)容

測量鐵塔頂端到地面的高度

測量目標(biāo)示意圖

相關(guān)數(shù)據(jù)

CD=20m,ɑ=45°,β=52°

求鐵塔的高度FE(結(jié)果精確到1)(參考數(shù)據(jù):sin52°≈0.79, cos52°≈0.62,tan52°≈1.28

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小亮將筆記本電腦水平放置在桌子上,顯示屏OA與底板OB所在水平線的夾角為120°時,感覺最舒適(如圖1),側(cè)面示意圖為圖2;使用時為了散熱,她在底板下面墊入散熱架BCO'后,電腦轉(zhuǎn)到B O′A′位置(如圖3),側(cè)面示意圖為圖4.已知OA=OB=28cm,O′C⊥OB于點(diǎn)C,O′C=14cm.

(參考數(shù)據(jù):,,

(1)求∠CBO'的度數(shù).

(2)顯示屏的頂部A'比原來升高了多少cm?(結(jié)果精確到0.1cm)

(3)如圖4,墊入散熱架后,要使顯示屏O′A′與水平線的夾角仍保持120°,則顯示屏O′A′應(yīng)繞點(diǎn)O'按順時針方向旋轉(zhuǎn)多少度?(不寫過程,只寫結(jié)果

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,是斜邊AB上的中線,以為直徑的分別交于點(diǎn),過點(diǎn)N,垂足為

1)求證:相切;

2)若半徑為,,則的長為_______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】星光隧道是貫穿新牌坊商圈和照母山以北的高端居住區(qū)的重要紐帶,預(yù)計2017年底竣工通車圖中線段AB表示該工程的部分隧道,無人勘測飛機(jī)從隧道一側(cè)的點(diǎn)A出發(fā)沿著坡度為12的路線AE飛行,飛行至分界點(diǎn)C的正上方點(diǎn)D,測得隧道另一側(cè)點(diǎn)B的俯角為12°繼續(xù)飛行到點(diǎn)E,測得點(diǎn)B的俯角為45°,此時點(diǎn)E離地面高度EF=700,則隧道BC段的長度約為( )米.(參考數(shù)據(jù)tan12°≈0.2cos12°≈0.98

A. 2100 B. 1600 C. 1500 D. 1540

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在 RtABC 中,∠BAC=90°AB=6,AC=8,D AC 上一點(diǎn),將ABD 沿 BD 折疊,使點(diǎn) A 恰好落在 BC 上的 E 處,則折痕 BD 的長是(

A.5B.C.3 D.

查看答案和解析>>

同步練習(xí)冊答案