【題目】如圖1,點(diǎn)Pm,n)在一次函數(shù) 的圖像上,將點(diǎn)P繞點(diǎn)A)逆時(shí)針旋轉(zhuǎn)45°,旋轉(zhuǎn)后的對應(yīng)點(diǎn)為P

1)當(dāng)時(shí),求點(diǎn)P的坐標(biāo);

2)試說明:不論m為何值,點(diǎn)P的縱坐標(biāo)始終不變;

3)如圖2,過點(diǎn)Px軸的垂線交直線AP于點(diǎn)B,若直線PB與二次函數(shù) 的圖像交于點(diǎn)Q,當(dāng)m0時(shí),試判斷點(diǎn)B是否一定在點(diǎn)Q的上方,請說明理由.

【答案】1;(2)理由見解析;(3)點(diǎn) B一定在點(diǎn)Q的上方,理由見解析

【解析】

1)如圖 當(dāng)m=0時(shí),PO重合,過A直線y=-x,過 作直線∥x軸,交直線y=-xM點(diǎn),過AAH⊥H,可以求出直線的解析式,進(jìn)而求出,由長度公式可得,證明 即可求出答案;

2)無論m0,m=0,m0時(shí),均有 故可得出:點(diǎn)的縱坐標(biāo);

3)求出的交點(diǎn),分P在交點(diǎn)的左右兩側(cè)及交點(diǎn)上進(jìn)行畫圖,由圖像即可得出:點(diǎn) B一定在點(diǎn)Q的上方.

1)如圖 當(dāng)m=0時(shí),PO重合

A直線y=-x

故設(shè)直線的解析式為

代入可得

所以

由長度公式可得

∵y=-x

∴∠1=45°

∴∠2=180°-45°=135°

作直線∥x軸,交直線y=-xM點(diǎn),過AAH⊥H

∴∠AHP==90°

在四邊形中:

,

∴H點(diǎn)的縱坐標(biāo)為:

的橫坐標(biāo)為:

;

2)當(dāng)m0,m=0,m0時(shí),點(diǎn)P 的縱坐標(biāo)均為,證明過程如下:

當(dāng)m0,m=0,m0時(shí),均有:

∵y=-x

∴∠1=45°

∴∠2=180°-45°=135°

作直線∥x軸,交直線y=-xM點(diǎn),過AAH⊥H

∴∠AHP==90°

在四邊形中:

,

點(diǎn)的縱坐標(biāo)為:

故:當(dāng)m0,m=0,m0時(shí),點(diǎn)P 的縱坐標(biāo)均為

3)點(diǎn) B一定在點(diǎn)Q的上方,理由如下:

解得:

交于C ,D 兩點(diǎn)

由圖像可知當(dāng) 時(shí)

∠QAP<45°,∠BAP=45°

BQ的上方

當(dāng) 時(shí),由圖像可知:P、QD三點(diǎn)重合

點(diǎn) B一定在點(diǎn)Q的上方

當(dāng) 時(shí),由圖像可知:

Q在直線y=-x的下方B在直線y=-x的上方

∴BQ的上方

綜上所述:當(dāng)m>0時(shí),點(diǎn) B一定在點(diǎn)Q的上方

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有甲、乙兩種客車,2輛甲種客車與3輛乙種客車的總載客量為180人,1輛甲種客車與2輛乙種客車的總載客量為105人.

1)請問1輛甲種客車與1輛乙種客車的載客量分別為多少人?

2)某學(xué)校組織240名師生集體外出活動,擬租用甲、乙兩種客車共6輛,一次將全部師生送到指定地點(diǎn).若每輛甲種客車的租金為400元,每輛乙種客車的租金為280元,請給出最節(jié)省費(fèi)用的租車方案,并求出最低費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知邊長為5的菱形ABCD中,對角線AC長為6,點(diǎn)E在對角線BD上且tanEAC=,則BE的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在RtABC中,∠ACB90°,BC12cosB,D、E分別是AB、BC邊上的中點(diǎn),AECD相交于點(diǎn)G

1)求CG的長;

2)求tanBAE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩校各選派10名學(xué)生參加美麗泰州鄉(xiāng)土風(fēng)情知識大賽預(yù)賽.各參賽選手的成績?nèi)缦拢?/span>

甲校:93,9889,93 95,96 93,96,98, 99

乙校:93,94,88,91,92,93,100, 98,98,93

通過整理,得到數(shù)據(jù)分析表如下:

學(xué)校

最高分

平均分

中位數(shù)

眾數(shù)

方差

甲校

99

a

95.5

93

8.4

乙校

100

94

b

93

c

1)填空:a = b = ;

2)求出表中c的值,你認(rèn)為哪所學(xué)校代表隊(duì)成績好?請寫出兩條你認(rèn)為該隊(duì)成績好的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC為和點(diǎn)A'.

(1)以點(diǎn)A'為頂點(diǎn)求作A'B'C',使A'B'C'ABCSA'B'C'=4SABC;

(尺規(guī)作圖,保留作圖痕跡,不寫作法)

(2)設(shè)D、E、F分別是ABC三邊AB、BCAC的中點(diǎn),D'E'、F'分別是你所作的A'B'C'三邊A'B'、B'C'A'C'的中點(diǎn),求證:DEFD'E'F'.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下列圖形:它們是按一定規(guī)律排列的,依照此規(guī)律,第10個(gè)圖形中共有_____個(gè)點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=﹣x2+bx+c上部分點(diǎn)的橫坐標(biāo)x,縱坐標(biāo)y的對應(yīng)值如下表所示:

x

﹣2

﹣1

0

1

2

y

0

4

6

6

4

從上表可知,下列說法中,錯(cuò)誤的是( )

A. 拋物線于x軸的一個(gè)交點(diǎn)坐標(biāo)為(﹣2,0)

B. 拋物線與y軸的交點(diǎn)坐標(biāo)為(0,6)

C. 拋物線的對稱軸是直線x=0

D. 拋物線在對稱軸左側(cè)部分是上升的

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=6,AD=2,將矩形ABCD繞點(diǎn)B按順時(shí)針方向旋轉(zhuǎn)后得到矩形EBGF,此時(shí)恰好四邊形AEHB為菱形,連接CH交FG于點(diǎn)M,則HM的長度為( 。

A. B. 2 C. D. 1

查看答案和解析>>

同步練習(xí)冊答案