【題目】如圖,已知△ABC為和點A'.
(1)以點A'為頂點求作△A'B'C',使△A'B'C'∽△ABC,S△A'B'C'=4S△ABC;
(尺規(guī)作圖,保留作圖痕跡,不寫作法)
(2)設(shè)D、E、F分別是△ABC三邊AB、BC、AC的中點,D'、E'、F'分別是你所作的△A'B'C'三邊A'B'、B'C'、A'C'的中點,求證:△DEF∽△D'E'F'.
【答案】(1)作圖見解析;(2)證明見解析.
【解析】
(1)分別作A'C'=2AC、A'B'=2AB、B'C'=2BC得△A'B'C'即可.
(2)根據(jù)中位線定理易得△DEF∽△CAB,△D'E'F'∽△C'A'B',故可得△DEF∽△D'E'F'.
解:(1)作線段A'C'=2AC、A'B'=2AB、B'C'=2BC,得△A'B'C'即為所求.
證明:∵A'C'=2AC、A'B'=2AB、B'C'=2BC,
∴△ABC∽△A′B′C′,
∴;
(2)證明:∵D、E、F分別是△ABC三邊AB、BC、AC的中點,
∴DE=AC,DF=BC,EF=AB,
∴△DEF∽△CAB,
同理:△D'E'F'∽△C'A' B',
由(1)可知:△ABC∽△A′B′C′,
∴△DEF∽△D'E'F'.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與軸交于點,與軸交于點,拋物線經(jīng)過,兩點,與軸正半軸交于點,連接,為線段上的動點,與,不重合,作交于,關(guān)于的對稱點為,連接,,.
(1)求拋物線的解析式;
(2)當(dāng)點在拋物線上時,求點的坐標(biāo);
(3)設(shè)點的橫坐標(biāo)為,與重疊部分的面積為.
①直接寫出與的函數(shù)關(guān)系式;
②當(dāng)為直角三角形時,直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O中,AB是⊙O的直徑,G為弦AE的中點,連接OG并延長交⊙O于點D,連接BD交AE于點F,延長AE至點C,使得FC=BC,連接BC.
(1)求證:BC是⊙O的切線;
(2)⊙O的半徑為5,tanA=,求FD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.為了解全國中學(xué)生視力的情況,應(yīng)采用普查的方式
B.某種彩票中獎的概率是,買1000張這種彩票一定會中獎
C.從2000名學(xué)生中隨機(jī)抽取200名學(xué)生進(jìn)行調(diào)查,樣本容量為200名學(xué)生
D.從只裝有白球和綠球的袋中任意摸出一個球,摸出黑球是確定事件
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點P(m,n)在一次函數(shù) 的圖像上,將點P繞點A(,)逆時針旋轉(zhuǎn)45°,旋轉(zhuǎn)后的對應(yīng)點為P.
(1)當(dāng)時,求點P的坐標(biāo);
(2)試說明:不論m為何值,點P的縱坐標(biāo)始終不變;
(3)如圖2,過點P作x軸的垂線交直線AP于點B,若直線PB與二次函數(shù) 的圖像交于點Q,當(dāng)m>0時,試判斷點B是否一定在點Q的上方,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四個全等的直角三角形按圖示方式圍成正方形ABCD,過各較長直角邊的中點作垂線,圍成面積為S的小正方形EFGH.已知AM為Rt△ABM較長直角邊,AM=2EF,則正方形ABCD的面積為( 。
A. 14SB. 13SC. 12SD. 11S
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果店在兩周內(nèi),將標(biāo)價為10元/斤的某種水果,經(jīng)過兩次降價后的價格為8.1元/斤,并且兩次降價的百分率相同.
(1)求該種水果每次降價的百分率;
(2)從第一次降價的第1天算起,第x天(x為整數(shù))的售價、銷量及儲存和損耗費用的相關(guān)信息如表所示.已知該種水果的進(jìn)價為4.1元/斤,設(shè)銷售該水果第x(天)的利潤為y(元),求y與x(1≤x<15)之間的函數(shù)關(guān)系式,并求出第幾天時銷售利潤最大?
時間x(天) | 1≤x<9 | 9≤x<15 | x≥15 |
售價(元/斤) | 第1次降價后的價格 | 第2次降價后的價格 | |
銷量(斤) | 80﹣3x | 120﹣x | |
儲存和損耗費用(元) | 40+3x | 3x2﹣64x+400 |
(3)在(2)的條件下,若要使第15天的利潤比(2)中最大利潤最多少127.5元,則第15天在第14天的價格基礎(chǔ)上最多可降多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O交BC于點D.延長CA交⊙O于點E,BH是⊙O的切線,作CH⊥BH.垂足為H.
(1)求證:BE=BH;
(2)若AB=5,tan∠CBE=2,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩車分別從A、B兩地同時出發(fā),在同一條公路上,勻速行駛,相向而行,到兩車相遇時停止.甲車行駛一段時間后,因故停車0.5小時,故障解除后,繼續(xù)以原速向B地行駛,兩車之間的路程y(千米)與出發(fā)后所用時間x(小時)之間的函數(shù)關(guān)系如圖所示.
(1)求甲、乙兩車行駛的速度V甲、V乙.
(2)求m的值.
(3)若甲車沒有故障停車,求可以提前多長時間兩車相遇.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com