【題目】如圖,拋物線y=ax2+bx+c(a≠0對稱軸為直線x=1,與x軸的一個交點坐標為(﹣1,0),其部分圖象如圖所示,下列結(jié)論:①abc<0;②4ac<b2;③方程ax2+bx+c=0的兩個根是x1=﹣1,x2=3;④3a+c>0;⑤當y≥0時,x的取值范圍是﹣1≤x≤3.其中結(jié)論正確的個數(shù)是( 。

A. 1個B. 2個C. 3D. 4個

【答案】D

【解析】

利由拋物線的位置可對①進行判斷;用拋物線與x軸的交點個數(shù)可對②進行判斷;利用拋物線的對稱性得到拋物線與x軸的一個交點坐標為(3,0),則可對③進行判斷;由對稱軸方程得到b=-2a,然后根據(jù)x=-1時函數(shù)值為0可得到3a+c=0,則可對④進行判斷;根據(jù)拋物線在x軸上方所對應的自變量的范圍可對⑤進行判斷.

∵拋物線開口向下,

a<0,

∵對稱軸在y軸的右側(cè),

->0,

b>0,

∵拋物線交y軸的正半軸,

c>0,

abc<0,故①正確;

∵拋物線與x軸有2個交點,

b2-4ac>0,

b2>4ac,故②正確;

∵拋物線的對稱軸為直線x=1,

而點(-1,0)關于直線x=1的對稱點的坐標為(3,0),

∴方程ax2+bx+c=0的兩個根是x1=-1,x2=3,故③正確;

x=-=1,即b=-2a,

x=-1時,y=0,即a-b+c=0,

a+2a+c=0,即3a+c=0,故④錯誤;

∵拋物線與x軸的兩點坐標為(-1,0),(3,0),

∴當-1≤x≤3時,y≥0,故⑤正確;

故選D.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,小球從左側(cè)的斜坡滾下,到達底端后又沿著右側(cè)斜坡向上滾,在這個過程中,小球的運動速度v(單位:m/s)與運動時間t (單位:s)的函數(shù)圖象如圖2,則該小球的運動路程y(單位:m)與運動時間t(單位:s)之間的函數(shù)圖象大致是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+bx+3的圖象交x軸于點A(1,0),B(3,0),交y軸于點C.

(1)求這個二次函數(shù)的表達式;

(2)P是直線BC下方拋物線上的一動點,求BCP面積的最大值;

(3)直線x=m分別交直線BC和拋物線于點M,N,當BMN是等腰三角形時,直接寫出m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩商場以同樣的價格出售同樣的商品,并且又各自推出不同的優(yōu)惠方案:在甲商場累計購物超過100元后,超出100元的部分按八折收費;在乙商場累計購物超過50元后,超出50元的部分按九折收費.設顧客累計購物(單位:元),購物花費為(單位:元).

(1)分別寫出在甲、乙兩個商場購物時,關于的函數(shù)解析式;

(2)顧客到哪家商場購物花費少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校計劃組織學生參加學校書法、攝影、籃球、乒乓球四個課外興趣小組,要求每人必須參加并且只能選擇其中的一個小組,為了了解學生對四個課外小組的選擇情況,學校從全體學生中隨機抽取部分學生進行問卷調(diào)查,并把調(diào)查結(jié)果制成如圖所示的兩幅不完整的統(tǒng)計圖,請你根據(jù)給出的信息解答下列問題:

1)求該校參加這次問卷調(diào)查的學生人數(shù),并補全條形統(tǒng)計圖(畫圖后請標注相應的數(shù)據(jù));

2m    ,n    ;

3)若該校共有2000名學生,試估計該校選擇乒乓球課外興趣小組的學生有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,甲樓AB20米,乙樓CD10米,兩棟樓之間的水平距離BD30m,為了測量某電視塔EF的高度,小明在甲樓樓頂A處觀測電視塔塔頂E,測得仰角為37°,小明在乙樓樓頂C處觀測電視塔塔頂E,測得仰角為45°,求該電視塔的高度EF

(參考數(shù)據(jù):sin37°≈0.6,cos37°≈0.8tan37°≈0.75,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O是△ABC的外接圓,AB是直徑,DAC中點,直線OD與⊙O相交于E,F兩點,P是⊙O外一點,P在直線OD上,連接PA,PC,AF,且滿足∠PCA=ABC

1)求證:PA是⊙O的切線;

2)證明:;

3)若BC=8,tanAFP=,求DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小寇隨機調(diào)查了若干租用共享單車市民的騎車時間t(單位:分),將獲得的據(jù)分成四組(A0t10,B10t20,C20t30, Dt30),繪制了如下統(tǒng)計圖,根據(jù)圖中信息,解答下列問題:

1)小寇調(diào)查的總?cè)藬?shù)是 人;

2)表示C組的扇形統(tǒng)計圖的圓心角的度數(shù)是 °;

3)如果小寇想從D組的甲、乙、丙、丁四人中隨機選擇兩人進一步了解平時租用共享單車情況,請用列表或畫樹狀圖的方法求出丁被選中的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,ABC的邊BC在x軸上,頂點A在y軸的正半軸上,OA=2,OB=1,OC=4.

(1)求過A、B、C三點的拋物線的解析式;

(2)設點M是x軸上的動點,試問:在平面直角坐標系中,是否存在點N,使得以點A,B,M,N為頂點的四邊形是菱形?若存在,直接寫出點N的坐標;若不存在,說明理由;

(3)若拋物線對稱軸交x軸于點P,在平面直角坐標系中,是否存在點Q,使PAQ是以PA為腰的等腰直角三角形?若存在,寫出所有符合條件的點Q的坐標,選擇一種情況加以說明;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案