【題目】.在△AOB中∠AOB=,OA=OB=10,分別以OA、OB所在直線(xiàn)為坐標(biāo)軸建立平面直角坐標(biāo)系(如圖所示).點(diǎn)P自點(diǎn)A出發(fā)沿線(xiàn)段AB勻速運(yùn)動(dòng)到點(diǎn)B停止,同時(shí)點(diǎn)D自原點(diǎn)O出發(fā)沿x軸正方向勻速運(yùn)動(dòng),在點(diǎn)P、D運(yùn)動(dòng)的過(guò)程中,始終滿(mǎn)足PO=PD,過(guò)點(diǎn)O、D向AB作垂線(xiàn),垂足分別為點(diǎn)C、E,設(shè)OD的長(zhǎng)為x.
(1)求AP的長(zhǎng)(用含x的代數(shù)式表示)
(2)在點(diǎn)P、D的運(yùn)動(dòng)過(guò)程中,線(xiàn)段PC與DE是否相等?若相等,請(qǐng)給予證明;若不相等,請(qǐng)說(shuō)明理由;
(3)設(shè)以點(diǎn)P、O、D、E為頂點(diǎn)的四邊形的面積為y,請(qǐng)直接寫(xiě)出y與x的函數(shù)關(guān)系式,并寫(xiě)出自變量的取值范圍.
【答案】見(jiàn)解析.
【解析】
(1)作PG⊥x軸于點(diǎn)G,PF⊥y軸于點(diǎn)F,在Rt△APF中,∠PAF=45°,PF=APsin45°=AP,=AP,所以AP=x;
(2)分兩種情況①當(dāng)0≤x<10時(shí);②當(dāng)10≤x≤20時(shí);
(3)①當(dāng)0<x<10時(shí),S四邊形PODE=S△AOB-S△AOP-S△DEB;②當(dāng)10≤x≤20時(shí), S四邊形PODE=S△POD+S△DOE.
解:(1)作PG⊥x軸于點(diǎn)G,PF⊥y軸于點(diǎn)F,
在Rt△APF中,∠PAF=45°,PF=APsin45°=AP,
∵OG=PF,即=AP,
∴AP=x ;
(2)結(jié)論:PC=BE.
①當(dāng)0≤x<10時(shí),
∵PC=AC-AP=5-x,BE=BD=(10-x)═,
∴PC=BE,
②當(dāng)10≤x≤20時(shí),如圖
∵PC=AP-AC=,BE=BD=(x-10)=,
∴PC=BE,
綜合①②PC=BE;
(3)①當(dāng)0<x<10時(shí),
S四邊形PODE=S△AOB-S△AOP-S△DEB==-x2+x+25,
②當(dāng)10≤x≤20時(shí),
S四邊形PODE=S△POD+S△DOE==.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正方體紙盒的表面積為12cm2;
(1)求正方體的棱長(zhǎng);
(2)剪去蓋子后,插入一根長(zhǎng)為5cm的細(xì)木棒,則細(xì)木棒露在外面的最短長(zhǎng)度是多少?
(3)一只螞蟻在紙盒的表面由A爬到B,求螞蟻行走的最短路線(xiàn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線(xiàn)y=x2-2x-3的頂點(diǎn)為A,交x軸于B,D兩點(diǎn),與y軸交于點(diǎn)C.
(1)求線(xiàn)段BD的長(zhǎng);
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等邊△ABC中,AH⊥BC,垂足為H,且AH=6 cm,點(diǎn)D是AB的中點(diǎn),點(diǎn)P是AH上一動(dòng)點(diǎn),則DP與BP和的最小值是__________cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于一個(gè)圖形,通過(guò)兩種不同的方法計(jì)算它的面積,可以得到一個(gè)數(shù)學(xué)等式,例如圖1可以得到,請(qǐng)解答下列問(wèn)題:
(1)圖2所表示的數(shù)學(xué)等式為_____________________;
(2)利用(1)得到的結(jié)論,解決問(wèn)題: 若,求的值;
(3)如圖3,將兩個(gè)邊長(zhǎng)分別為a和b的正方形拼在一起,三點(diǎn)在同一直線(xiàn)上,連接,若兩正方形的邊長(zhǎng)滿(mǎn)足求陰影部分面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)E是BC的中點(diǎn),AB⊥BC,DC⊥BC,AE平分∠BAD,下列結(jié)論:①∠AED=90°②∠ADE=∠CDE③DE=BE④AD=AB+CD,四個(gè)結(jié)論中成立的是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為1的正方形網(wǎng)格中,△ABC的頂點(diǎn)均在格點(diǎn)上.
(1)畫(huà)出△ABC關(guān)于原點(diǎn)成中心對(duì)稱(chēng)的△A′B′C′,并直接寫(xiě)出△A′B′C′各頂點(diǎn)的坐標(biāo);
(2)連接BC′,B′C,求四邊形BCB′C′的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,對(duì)于點(diǎn)P(x,y),我們把點(diǎn)P′(﹣y+1,x+1)叫做點(diǎn)P的伴隨點(diǎn).已知點(diǎn)A1的伴隨點(diǎn)為A2,點(diǎn)A2的伴隨點(diǎn)為A3,點(diǎn)A3的伴隨點(diǎn)為A4,…,這樣依次得到點(diǎn)A1,A2,A3,…,An,….若點(diǎn)A1的坐標(biāo)為(a,b),則點(diǎn)A2020的坐標(biāo)為( )
A.(a,b)B.(﹣b+1,a+1)C.(﹣a,﹣b+2)D.(b﹣1,﹣a+1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】請(qǐng)把下面證明過(guò)程補(bǔ)充完整
如圖,已知AD⊥BC于D,點(diǎn)E在BA的延長(zhǎng)線(xiàn)上,EG⊥BC于C,交AC于點(diǎn)F,∠E=∠1.求證:AD平分∠BAC.
證明:∵AD⊥BC于D,EG⊥BC于G( ),
∴∠ADC=∠EGC=90°( ),
∴AD∥EG( ),
∴∠1=∠2( ),
∴_____=∠3( ),
又∵∠E=∠1(已知),∴∠2=∠3( ),
∴AD平分∠BAC( )
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com